
Program Mobile Robots in Scheme

1

Jonathan Rees Bruce Donald

Computer Science Robotics and Vision Laboratory

Cornell University

Ithaca, NY 14850

Abstract

We have implemented a software environment that

permits a small mobile robot to be programmed us-

ing the Scheme programming language[3]. The envi-

ronment supports incremental modi�cations to run-

ning programs and interactive debugging using a dis-

tributed read-evaluate-print loop. To ensure that the

programming environment consumes a minimum of

the robot's scarce on-board resources, it separates the

essential on-board run-time system from the develop-

ment environment, which runs on a separate worksta-

tion. The development environment takes advantage

of the workstation's large address space and user en-

vironment. It is fully detachable, so that the robot

can operate autonomously if desired, and can be reat-

tached for retrospective analysis of the robot's behav-

ior.

To make concurrent applications easier to write,

the run-time library provides multitasking and syn-

chronization primitives. Tasks are light-weight and

all tasks run in the same address space. Although

the programming environment was designed with one

particular mobile robot architecture in mind, it is in

principle applicable to other embedded systems.

1 Introduction

The Lisp family of programming languages has a

long history as a basis for rapid prototyping of com-

plex systems and experimentation in new program-

ming paradigms. Polymorphism, higher-order proce-

dures, automatic memory management, and the abil-

1

This paper describes research done in the Computer Science

Robotics and Vision Laboratory at Cornell University. Sup-

port for our robotics research is provided in part by the Na-

tional Science Foundation under grants no. IRI-8802390 and

IRI-9000532 and by a Presidential Young Investigator award to

Bruce Donald, and in part by the Air Force O�ce of Sponsored

Research, the Mathematical Sciences Institute, Intel Corpora-

tion, and AT&T Bell Laboratories.

ity to use a functional programming style all aid the

development of concise and reliable programs[1]. In

this paper we promote the application of the Scheme

dialect of Lisp to programming a mobile robot sys-

tem whose limited resources might contraindicate the

use of high-level language features and an integrated

programming environment.

The following example gives the 
avor of the

Scheme system. The procedure sonar-accumulate

takes as its arguments an initial state and a procedure

that combines a previous state with a sonar reading

to obtain a new state. The combination procedure is

called once for each of the twelve sonar transducers,

and is supplied with the transducer number and the

sensed distance. The returned value is the �nal state.

(define (sonar-accumulate combine init)

(let loop ((val init)

(i 0))

(if (>= i 6)

val

(let* ((j (+ i 6))

(rs (read-sonars i j)))

(loop (combine j (cdr rs)

(combine i (car rs)

val))

(+ i 1))))))

The implementation of this control abstraction hides

the fact that the sonar hardware allows only par-

ticular transducer pairs to be read simultaneously.

sonar-accumulatemight be used to determine which

transducer is giving the smallest reading:

(define (nearest-sonar)

(sonar-accumulate

(lambda (i dist previous)

(if (< dist (cdr previous))

(cons i dist)

previous))

(cons -1 infinity)))

The paper is structured as follows: Sections 2 and 3

describe the hardware and software architecture of



Figure 1: Tommy, the mobile robot.

the robot and its Scheme implementation. Section 4

brie
y presents facilities available to the programmer

beyond what Scheme ordinarily provides. Section 5

discusses the relative success of the design and ways

in which it could have been di�erent. Section 6 de-

scribes what we would like to do next. An appendix

gives an extended example.

2 Hardware

The particular hardware targeted by this project is

a Cornell mobile robot built on the Real World In-

terface B12 wheel base (�gures 1 and 2). The robot

is roughly cylindrical, about 50 cm tall with a 30

cm diameter. An enclosure contains a rack in which

is mounted several processor and I/O boards. The

robot architecture is distributed and modular, so that

di�erent sensors and e�ectors are easily added and

removed. Interprocessor communications is via 19.2

Kbaud serial lines. Low-level I/O is handled by a

Cornell Generic Controller (CGC), a general-purpose

control board based on an Intel 80C196 processor[10].

High-level task control and planning are performed

by Scheme programs running on an o�-the-shelf Mo-

torola 68000 processor board (Gespak MPL 4080).

The 68000 board has .5 Mbyte RAM and .25 Mbyte

MC68000 single
board computer

Cornell Generic
Controller

front panel

speech

RWI wheel base

G
-
9
6
 
b
u
s

sonar

bumper switches

IR proximity
detectors

detachable
communications
tether

Figure 2: Hardware architecture.

EPROM, and Scheme currently uses no o�-board

memory.

The entire robot is powered by rechargeable bat-

teries in the wheel base. The robot draws about 1.2

amps when idle, more when moving.

Much of Scheme's communication with sensors and

e�ectors is accomplished by messages transmitted to

and received from a Cornell Generic Controller over

a serial line. The CGC relays messages to and from

various other devices. In principle Scheme could com-

municate directly with many devices as it does with

the sonar, but we prefer to o�-load device control to

the CGC, which has richer I/O capabilities.

The features of this architecture relevant to Scheme

are:

� Small physical size (one 10 by 17 by 1 cm cir-

cuit board) | this means small memory size com-

pared to a workstation.

� Low power consumption| this means a slow pro-

cessor (16 MHz 68000 board, 130 mA).

� Low bandwidth for communications with the

workstation.

Also part of the hardware for the overall develop-

ment system is a workstation capable of running a full-

sized Scheme or Common Lisp implementation, text

editor, and so on; currently this is a Sun Sparcsta-

tion, but any similar workstation would work as well.

The workstation communicates with Scheme on the

robot over a 19.2 Kbaud serial line tether. Some kind

of wireless communication would be nice, but we are

concerned about robustness and dropout, and would

like to maintain the option of running autonomously.



Scheme run-time
library

Scheme virtual
machine
(byte-code
 interpreter)

68000 monitor

user’s mobot
control program

emacs, graphics,
etc.

byte-code
compiler and
debugger

Scheme (=
 Pseudoscheme +
 Common Lisp)

Mobot Workstation

user’s macros

d
e
t
a
c
h
a
b
l
e
 
t
e
t
h
e
r

Figure 3: Software architecture.

3 Scheme system architecture

The Scheme system consists of a run-time environ-

ment, which resides on the robot, and a development

environment, which resides on a separate workstation.

The two communicate with each other over a serial

line. Figure 3 summarizes the major software compo-

nents of the Scheme system.

3.1 Run-time environment

The run-time environment builds on the Scheme48

virtual machine architecture[12]. The virtual ma-

chine is byte-code based and stack-oriented, closely

resembling the target machine of the Scheme 311

compiler[4], and similar in spirit to [8]. The VM

handles memory management: allocation instructions

(such as cons) can cause garbage collections. The

virtual machine is implemented by an interpreter

and garbage collector written in C. Compiled for the

68000, the virtual machine consumes about 24 Kbytes

of EPROM.

The VM has I/O instructions corresponding to

the Scheme procedures read-char and write-char.

These instructions are executed using traps to a simple

supervisor-mode monitor. Access to the appropriate

sonar control registers also requires a small amount of

virtual machine support. Other than Scheme and the

monitor, no other operating system runs on the 68000.

The virtual machine executes both user code and

software for communicationwith the development sys-

tem. The communications software and a standard

run-time library (see section 4) reside in EPROM,

while byte codes for user programs are downloaded

from the workstation over the tether.

3.2 Development environment

The programmer using the Scheme system inter-

acts with the development environment, which runs

under a Scheme implementation on a workstation.

For Scheme on the workstation, we are currently run-

ning Pseudoscheme[14] under Lucid Common Lisp,

but MIT Scheme or any of various other Scheme im-

plementations would work as well. We could run

Scheme48 itself on the workstation, but Lucid and

MIT Scheme are preferable for their speed (they both

sport optimizing native-code compilers) and for their

integration with other software on the workstation, in-

cluding existing packages for graphics, planning, com-

putational geometry, and spatial reasoning.

The development environment is an 11 Mbyte exe-

cutable image, and usually runs under the control of

GNU Emacs. It includes a command loop that accepts

Scheme expressions to evaluate and other commands

that control the environment in various ways: load a

source �le, reset the run-time system, etc. The de-

velopment system translates Scheme source code into

a byte-code instruction stream, which is transmitted

over the serial line to the Scheme run-time system on

the 68000.

The development system performs as much prepro-

cessing as possible on user code before sending the

code to the run-time system. The compilation process

includes symbol table lookups, so no variable names or

tables need to reside in the robot itself. Error messages

and backtraces that come back from the run-time sys-

tem are interpreted relative to the same symbol tables

resident in the development system. As a result of

this policy, on-board overhead is kept to a minimum.

The run-time library, which includes communications

software, standard Scheme library procedures such as

append and string->number, and the extensions de-

scribed below, is only about 70 Kbytes of byte codes

and data.

When the tether is connected, it is possible for a

user program on the robot to call procedures on the

workstation, and vice versa. For example, a program

running on the robot can initiate graphics routines

that display output on the workstation's monitor.

4 Run-time library

Besides standard Scheme procedures such as + and

vector-ref, our Scheme comes equipped with proce-



dures that support sensor/e�ector control, multitask-

ing, and remote procedure call.

4.1 Controlling sensors and e�ectors

The run-time library contains a set of proce-

dures for obtaining information from sensors and

for issuing commands to e�ectors. For example,

(read-sonar 7) reads sonar unit number 7, and

(translate-relative 250) instructs the wheel base

to initiate a 250 mm forward motion. At a low level,

the various devices use di�erent units and coordinate

systems, but the library converts to consistent units

for use by Scheme programs.

Most sensor and e�ector control is mediated by a

CGC. The run-time library contains routines written

in Scheme that communicate with the CGC over a se-

rial line. Most operations consist of a single message

exchange. Access to the serial lines and sonar hard-

ware is synchronized to prevent con
icts when several

threads perform di�erent operations concurrently.

4.2 Lightweight threads

Multitasking is useful in writing programs that si-

multaneously manage several di�erent input and out-

put devices, or sensors and e�ectors in the case of a

robot. Our Scheme environment supports light-weight

threads with a library routine spawn. The argument

to spawn is a procedure of no arguments. The call

to spawn returns immediately, and a new thread is

started concurrently to execute a call to the proce-

dure. All threads run in the same address space, so

threads may communicate with one another by writ-

ing and reading shared variables or data structures.

For example, it may be convenient to have a dead-

reckoning integrator running continuously in its own

thread:

(define (reckon-loop)

(let ((o1 *current-odometry*)

(o2 (read-odometers)))

(set! *current-configuration*

(integrate-configuration

*current-configuration*

o1

o2))

(set! *current-odometry* o2))

(sleep *reckon-interval*)

(reckon-loop))

(spawn reckon-loop)

Other threads may consult the integrator's estimation

of the current con�guration (x; y; �) by simply consult-

ing the value of *current-configuration*. Because

variable references and assignments (and in fact, all

virtual machine instructions) are atomic, any partic-

ular reference to this variable will yield a consistent

con�guration triple.

The implementation of threads is written entirely in

Scheme, that is, above the level of the virtual machine.

This is made possible, even easy, by the existence

in Scheme of the call-with-current-continuation

primitive, which the virtual machine implements

e�ciently. See [16] for an elegant presentation

of this technique for building an operating sys-

tem kernel. (Actually, thread switching uses

the same low-level continuation mechanism that

call-with-current-continuation does, but does

not interact with dynamic-wind, described in the ap-

pendix.)

Because threads are ordinary Scheme objects with

no special status in the virtual machine, they are

garbage collected when no longer accessible. (All cur-

rently runnable threads are of course accessible.)

Synchronization is provided by lock operations sim-

ilar to those in Zetalisp or Lucid Common Lisp:

(make-lock) creates a new lock, and (with-lock

lock thunk) calls thunk after obtaining control of the

lock, blocking if some other thread currently holds

the lock. The lock is released on any normal or ex-

ceptional return from the call to thunk. A second

form of synchronization is condition variables as in

[15], which are single-assignment storage locations. A

condition variable is created with make-condvar, as-

signed with condvar-ref, and set (at most once) with

condvar-set!. A condvar-ref that precedes a condi-

tion variable's condvar-set! blocks until some other

thread performs such a condvar-set!.

4.3 Remote procedure call

Our Scheme system also supports a simple remote

procedure call capability. Whenever the tether is at-

tached, a procedure on the mobot may call a proce-

dure on the workstation, or vice versa. Because ad-

dress spaces are not shared, the mechanism is not

transparent, but it is supported by the procedures

host-procedure and mobot-procedure. E.g.

(define plan-path

(host-procedure 'plan-path))

... (plan-path destination) ...



This de�nes a procedure plan-path on the robot that,

when called, initiates an RPC to the procedure of the

same name residing on the host. This might be de-

sirable if, say, plan-path were too slow or too large

to run on the robot itself. Displaying graphical out-

put is another use for RPC's from the robot to the

workstation.

Similarly, a Scheme program on the worksta-

tion may call procedures on the robot using

mobot-procedure. For example, robot sensor and ef-

fector routines are easily accessed from the worksta-

tion:

(define read-all-infrareds

(mobot-procedure 'read-all-infrareds))

... (read-all-infrareds) ...

Multiple threads on host and robot may perform re-

mote procedure calls concurrently.

5 Discussion

Our thesis is that the combination of a high level

language with rapid turnaround for changes allows for

more experiments with the robot per unit time. As

with many claims about software engineering, this is

di�cult to test in any objective way. But we think

this will turn out to be true, as it has apparently been

true when Lisp and Scheme have been applied to other

domains.

There is nothing new about programming robots

in Lisp. To our knowledge, however, our implementa-

tion is unique in providing an advanced on-board Lisp

environment for a small robot.

Why implement Scheme? There exist good cross-

compilers and cross-debuggers for C, and these are in

many ways well suited for developing embedded sys-

tems. However:

� We prefer Scheme to C because its high-level fea-

tures (polymorphism, automatic memory man-

agement, and higher-order procedures) allow for

more concise, reliable programs.

� Because of its neutral syntax and powerful macro

and code-manipulation facilities, Scheme and

Lisp have historically been a good base for ex-

perimentation with special-purpose languages.

� The conventional architecture for a C program-

ming environment requires compiling entire mod-

ules and linking the entire program every time a

change is made to the program. With compiled

programs being sent over a 19.2 Kbaud serial line,

this makes the turnaround time for changes unac-

ceptably slow; and the alternative of putting the

C compiler and linker on the robot itself would

make the robot too large.

Another possible choice for a general-purpose robot

programming language would have been ML (or Con-

current ML[15]). Scheme made more sense for us given

the educational background of the students and re-

searchers that use the robot. Also, the Scheme48 sys-

tem already existed when this project started, and

was already well suited for cross-development; adapt-

ing an existing ML implementation would have been

much more work for us.

What about real-time constraints? Languages with

garbage collection have traditionally su�ered from de-

lays of up to several seconds while memory is being

reclaimed. We take the approach that one can live

with short delays. Essential tasks that require that

there be no garbage collection delays can run on sepa-

rate processors that do not run garbage collectors (e.g.

they can be programmed in C). However, the fact that

the 68000's memory is nonvirtual and �xed size means

that we can put an upper bound on the amount of time

taken by a garbage collection, and limiting the amount

of live data will limit the frequency of garbage collec-

tion; thus we can get absolute time bounds for speci�c

tasks, even when they run as Scheme programs that

allocate memory. With our current garbage collector,

a garbage collection of a 50% full heap requires over

half a second. This is slow, but we believe that this

time can be improved upon by tuning the code or by

switching to a generational collector[13].

Our choice of synchronization primitives is merely

conventional, not necessarily �nal. The set is not re-

ally su�cient in that it does not include an easy way

to wait on multiple events. We experimented with

Concurrent ML's primitives[15], but found that pro-

grams using them were di�cult to debug. The future

construct[9] would be easy to implement in the Scheme

virtual machine, but is probably inappropriate in this

context, since its purpose is exploiting parallelism, not

programming embedded systems.

While there has been some work on special-purpose

robot control languages (see e.g. [11] and review in [7]),

we considered it safer to hedge our bets by putting our

e�ort into building an uncommitted general-purpose

infrastructure.



6 Future work

Members of the Cornell Robotics and Vision Lab-

oratory are using this Scheme system for prototyp-

ing a variety of navigation, planning, and manipula-

tion systems. In particular, we intend to use the mo-

bile robot for testing a mathematical theory of task-

directed sensing and planning[6]. As the Scheme sys-

tem continues to be exercised, opportunities to im-

prove the programming infrastructure will continue to

arise. The communications software needs to be made

more robust, and further debugging aids, including a

trace package and inspector, need to be implemented.

The imminent arrival of additional robots running

Scheme will raise interesting issues in developing con-

trol programs for collaboration. It will be possible to

use a single host environment for coordinated debug-

ging of multiple robot systems.

We would like to experiment with and compare var-

ious programming language constructs and paradigms

for describing robot control systems. Scheme should

be an ideal medium for this. Of particular interest

to us are subsumption architecture[2], ALFA[7], and

Amala[5].

Performance may be a problem in the future. Any

interpreter for a virtual instruction set is likely to

be 20 to 30 times slower than equivalent code com-

piled for the target hardware. If the interpreter turns

out to be a bottleneck, we'll consider using a Scheme

compiler, either an existing one (Scheme-to-C, MIT

Scheme, etc.) or a new one. The advantages of doing

so must be weighed against the e�ect of lower den-

sity of native code relative to the virtual instruction

set. This might be an important consideration given

current memory limitations.

Acknowledgments

Thanks to Loretta Pompilio for drawing the illustration

in �gure 1.

Thanks to Craig Becker, Russell Brown, and Jim Jen-

nings for making the robot hardware and software work,

and for fruitful discussions about the architecture of the

Scheme implementation.

Thanks to Norman Adams and Richard Kelsey for their

comments on a draft of this paper.

Richard Kelsey is coauthor with Jonathan Rees of

Scheme48. We appreciate his help in getting Scheme48

to run on the robot.

The virtual machine was cross-compiled and cross-

linked using software developed and supported by the Free

Software Foundation. The availability of source code was

a great help in making our cross-development environment

work.

References

[1] Harold Abelson and Gerald Jay Sussman. Lisp: A

language for strati�ed design. BYTE, February 1988,

pages 207{218.

[2] Rodney A. Brooks. A robust layered control system

for a mobile robot. IEEE JRA RA-2 (1):14{23, 1986.

[3] William Clinger and Jonathan A. Rees, editors. The

revised

4

report on the algorithmic language Scheme.

Lisp Pointers 4(3), ACM, 1991.

[4] William Clinger. The Scheme 311 compiler: An exer-

cise in denotational semantics. In Conference Record

of the 1984 ACM Symposium on Lisp and Functional

Programming, pages 356{364.

[5] Mike Dixon. Embedded Computation and the Seman-

tics of Programs. PhD thesis, Stanford University,

1991.

[6] Bruce Donald and Jim Jennings. Constructive rec-

ognizability for task-directed robot programming. In

Proceedings of the 1992 IEEE International Confer-

ence on Robotics and Automation.

[7] Erann Gat. ALFA: A language for programming reac-

tive robotics control systems. Proceedings of the 1991

IEEE International Conference on Robotics and Au-

tomation, pages 1116{1121.

[8] Adele Goldberg and David Robson. Smalltalk-80:

The Language and its Implementation. Addison-

Wesley, 1983.

[9] Robert H. Halstead. Multilisp: a language for con-

current symbolic computation. ACM Transactions on

Programming Languages and Systems 7(4):501{538,

October 1985.

[10] Jim Jennings. Modular software and hardware for

robot construction. Unpublished manuscript.

[11] Leslie Pack Kaelbling and Stanley J. Rosenstein. Ac-

tion and planning in embedded agents. In Designing

Autonomous Agents: Theory and Practice from Biol-

ogy to Engineering and Back, MIT Press, 1990.

[12] Richard Kelsey and Jonathan Rees. Scheme48

progress report. Manuscript in preparation.

[13] Henry Lieberman and Carl Hewitt. A real-time

garbage collector based on the lifetimes of objects.

Communications of the ACM 26(6): 419{429, 1983.



[14] Jonathan Rees. A Scheme to Common Lisp transla-

tor. Manuscript in preparation.

[15] John H. Reppy. CML: a higher-order concurrent lan-

guage. In Proceedings of the SIGPLAN '88 Confer-

ence on Programming Language Design and Imple-

mentation, pages 293{305, 1991.

[16] Mitchell Wand. Continuation-based multiprocessing.

In Conference Record of the 1980 Lisp Conference,

pages 19{28. The Lisp Conference, P.O. Box 487,

Redwood Estates CA, 1980. Proceedings reprinted by

ACM.

Appendix

This appendix gives an extended example of robot pro-

gramming in Scheme, illustrating the use of threads and

higher-order procedures. heel is a simple loop that causes

the robot to follow whatever is in front of it. Most of the

rest of the example consists of a guarded servo loop that

modulates the pulse width commanded to the translation

and rotation motors.

(define (heel)

(kill-motors-on-exit

(lambda ()

(let loop ()

(let ((l (read-sonar 0))

(r (read-sonar 11)))

(translate (- (min l r)

*target-distance*))

(rotate (if (< r l) -15 15))

(sleep *heel-delay*)

(loop))))))

(define *heel-delay* (round/ one-second 4))

(define *target-distance* 400)

kill-motors-on-exit uses dynamic-wind to ensure

that any exceptional exit will turn o� the motors.

dynamic-wind is a run-time procedure also found in some

other Scheme dialects and analogous to Common Lisp's

unwind-protect. Its three arguments are an entry thunk,

a body thunk, and exit thunk, all of which are procedures of

no arguments. Ordinarily the three are invoked in order,

and the value delivered by the body thunk is returned.

The exit thunk is also called on exceptional exits (more

precisely, invocations of externally created continuations)

from the call to the body thunk, and the entry thunk is

called on exceptional re-entry, an unusual situation made

possible by call-with-current-continuation.

(define (kill-motors-on-exit thunk)

(dynamic-wind (lambda () #f)

thunk

(lambda ()

(translate-stop)

(rotate-stop))))

make-servo-loop is a higher-order procedure that can

be passed a particular odometer and motor and control

constants, returning a procedure that will control that mo-

tor. A control procedure produced by make-servo-loop is

called with a target velocity and a guard, and returns when

the guard predicate returns true. The guard is a procedure

that is passed the current odometer reading, an estimated

velocity, and the most recent power level that was com-

manded to the motor. friction is the amount of power

that has to be applied in order to overcome static friction,

drag is the amount of power required to increase velocity

by 1 mm/sec, and hysteresis = 1= (time required for a

power increase of 1 unit to have its full e�ect on velocity).

(define (make-servo-loop odometer apply-power

friction drag

hysteresis)

(lambda (velocity guard)

(dynamic-wind

(lambda () #f)

(lambda ()

(let loop ((x1 (odometer))

(t1 (time))

(v 0)

(pw (if (> velocity 0)

friction

(- 0 friction)))

(update-at (time)))

(apply-power pw)

(let ((t2 (time))

(x2 (odometer)))

(let ((v

(round/ (* (- x2 x1) one-second)

(- t2 t1))))

(or (guard x1 v pw)

(if (< t2 update-at)

(loop x2 t2 v pw update-at)

(let ((dpower

(* (- velocity v)

drag)))

(loop x2 t2 v

(+ pw dpower)

(+ t2

(round/

(abs dpower)

hysteresis))))

))))))

(lambda () (apply-power 0)))))



concurrent-servo-loop is a combinator that takes a

synchronous servo loop and returns a procedure that will

spawn a server loop to run asynchronously. The logic here

is tricky because if there's already a servo loop running, it

must be terminated before the new one can start.

(define (concurrent-servo-loop synchronous-loop)

(let ((lock (make-lock))

(condvar (make-condvar))

(stop? #f))

(condvar-set! condvar 'idle)

(lambda (velocity guard)

(with-lock lock

(lambda ()

(set! stop? 'usurp)

(condvar-ref condvar)

(set! condvar (make-condvar))

(spawn

(lambda ()

(dynamic-wind

(lambda () (set! stop? #f))

(lambda ()

(synchronous-loop

velocity

(conjoin (lambda (x v power)

stop?)

guard)))

(lambda ()

(condvar-set! condvar

'done))))))))))

; Constants determined by experiment.

(define translate-until

(concurrent-servo-loop

(make-servo-loop translate-where

apply-translate-power

6199 ;static friction

14 ;drag

12))) ;hysteresis

(define (translate dist)

(let ((target (+ (translate-where) dist)))

(if (>= dist 0)

(translate-until

*usual-speed*

(conjoin (position-guard > target)

bumper-guard

impediment-guard))

(translate-until

(- 0 *usual-speed*)

(conjoin (position-guard < target)

impediment-guard)))))

(define *usual-speed* 120)

(define (translate-stop)

(translate-until 0 (lambda ignore 'stop)))

(define rotate-until

(concurrent-servo-loop

(make-servo-loop rotate-where

apply-rotate-power

4449 ;static friction

160 ;drag

16))) ;hysteresis

rotate and rotate-stop are similar to translate and

translate-stop.

; Guard against going past a given position.

(define (position-guard pred value)

(lambda (x v power)

(if (pred x value)

'arrived

#f)))

; Guard against trying to go beyond an impediment.

(define (impediment-guard x v power)

(if (and (= x 0)

(> (abs power) *impediment-power*))

'impediment

#f))

(define *impediment-power* 15000) ;ca. 200 watts

; Guard against hitting things with the bumper.

(define (bumper-guard x v power)

(if (> (read-bumpers) 0)

'bumper

#f))

; Combine a set of guards into a single guard.

(define (conjoin guard . guards)

(if (null? guards)

guard

(let ((g (apply conjoin guards)))

(lambda args

(or (apply guard args)

(apply g args))))))

(define (apply-translate-power power)

(translate-power (power->pulse-width power)))

(define (apply-rotate-power power)

(rotate-power (power->pulse-width power)))

(define (power->pulse-width power)

(let ((pw (round/ power (battery-voltage))))

(if (< (abs pw) *pulse-width-limit*)

pw

(error "commanded power is too high"

power))))

(define *pulse-width-limit* 128)


