
The Scheme of Things:

Implementing Lexically Scoped Macros

1

Jonathan Rees

Massachusetts Institute of Technology

jar@ai.mit.edu

I have been hearing some complaints that Scheme's new lexically scoped

macro facility is di�cult to implement. There are two components to the

proposal: the pattern language and lexical scoping. The two pose indepen-

dent problems. I agree that the ellipsis-enriched pattern language can be

tricky to implement; implementations that I have seen take anywhere from

250 to 1400 lines of Scheme code. However, I believe that it is conceptually

straightforward, and several implementations have been around for many

years (see [9]). On the other hand, many people are unnecessarily getting

tripped up on lexical scoping, which, unlike the pattern matcher, is very

simple to implement.

(The Scheme report authors have not agreed on any low-level macro

de�ning facility. The appendix to the Revised

4

Report [4] describes a sample

low-level facility, but even that facility's own authors have repudiated it.

There are three other proposals for low-level facilities on the table [7, 3, 6],

and debate and experimentation continue.)

When the interpreter or compiler comes across a macro application, it

invokes a transcription function that computes a form that replaces the

macro application. For macros de�ned using syntax-rules, the transcrip-

tion function is responsible for matching the macro application against the

available patterns, and building a replacement according to the appropriate

template. For example:

(define-syntax test

(syntax-rules ()

((test ?thing ?proc ?else)

(let ((temp ?thing))

(if temp (?proc temp) ?else)))))

(The use of question marks is just a naming convention for meta-variables,

not part of their syntax.) Lexical scoping requires this macro to work even

when if or let is lambda-bound or when temp occurs in the ?proc or

1

To appear in Lisp Pointers VI(1), January{March 1993.

1



?else expressions. (With the Revised

4

Report's macro facility, there are no

reserved words, so one may now bind any identi�er, including those such as

if that are initially syntactic keywords.) Consider the following somewhat

contrived expression:

(test (read if)

(lambda (form)

(write (list form temp) of))

(newline of))

The variable if presumably holds an input �le port, and temp might be

the current temperature. A naive transcription function would rewrite this

expression as

(let ((temp (read if)))

(if temp

((lambda (form) (write (list form temp) of))

temp)

(newline of))).

The naive transcription su�ers from both kinds of capture problems: the

macro's temp collides with the macro user's temp, and the macro's if collides

with the macro user's if. In order to implement lexical scoping, constant

pieces of the output that come from the macro template must be distin-

guished from parts that come from the input form. We have at least two

choices here:

1. Represent the input form using ordinary Scheme symbols and pairs,

and have the transcription function use some di�erent data types in

order to distinguish the text that it adds. Then, arrange for the system

that processes the result to interpret the special types appropriately.

2. Represent the input form in some non-standard way, with symbols or

pairs replaced by some di�erent data types, and allow the transcription

function to embed the unusual structure in new text that is represented

using ordinary symbols and pairs. Then, have the system that delivers

the input to the transcription function make sure that the input has

the proper non-standard representation.

Nothing says that we even have to use symbols and pairs in the inter-

preter at all, so there is also the third option of combining the �rst two

options.

2



Option 1, using ordinary pairs but \unusual" identi�ers for added text,

corresponds to the algorithm described in [5]. Option 2, with ordinary pairs

and unusual identi�ers, corresponds to Kohlbecker's algorithm [8]. Option 2

also more or less encompasses syntactic closures [1], which use ordinary

symbols but wraps them inside unusual surrounding structure.

The implementation I will describe is a version of option 1. It is basically

a transcription into Scheme of the algorithm presented in [5].

A transcription function accepts and returns S-expressions in the usual

way. However, instead of inserting symbols into the output, as a naive

transcription function (one that does not respect lexical scoping) would have

done, it inserts generated names, which I will write using brackets, e.g. [temp

13]. The number is a unique tag that distinguishes the generated names

introduced by this macro expansion from those introduced by other macro

expansions. There is no reason that the tag has to be a number, as long as

it is unique to one particular expansion. Also, we could use a distinct tag

for each name, but it su�ces to use the same tag for all names generated

for a single macro expansion.

For the above example, the transcription function might return

([let 13] (([temp 13] (read if)))

([if 13] [temp 13]

((lambda (form) (write (list form temp) of))

[temp 13])

(newline of)))

Now the crucial step: We interpret (or compile) the output in a special

kind of lexical environment. Suppose that tag is the unique tag generated

for an expansion. The new lexical environment has the property that a

generated name of the form [name tag] has the same binding that the

name name does in the environment in which the macro was de�ned. All

other names are interpreted just as they are in the environment where the

macro application occurs. In the example, test was de�ned at top level, so

[let 13] and [if 13] get the top-level environment's bindings of let and

if, not the bindings of let and if in the environment in which the (test

...) form occurs. The name [temp 13] is initially bound to whatever temp

is bound to at top level, or perhaps it is unbound. [temp 13] is not used

free in the expansion, however, but only occurs in the let body, where it is

bound to the variable that gets the result of (read if).

Here we see both functions of generated names. They can act as reliable

references to top-level variables, or they can act as \gensyms" or noncon-

icting names for temporary quantities.

3



Figure 1 is the relevant portion of a simple Scheme compiler that imple-

ments this mechanism. The �gure includes all the code necessary to support

lexically scoped macros, except for details such as data structure de�nitions.

The output of this compiler might be machine code, byte codes, some kind

of tree-structured intermediate code (\S-code"), or even Scheme.

Figure 1 assumes that macros are represented as htranscribe; environmenti

pairs. Following [3], transcribe is a procedure of three arguments: the ex-

pression to be expanded, a name generation procedure that maps symbols

to generated names, and a comparison procedure for recognizing auxiliary

keywords (such as else in cond). The environment is the environment in

which the macro was de�ned; for macros de�ned with define-syntax, this

will be the top-level environment. Environments map names (symbols or

generated names) to \denotations," where a denotation is either a token

designating one of the special operators (lambda, quote, etc.), a macro, or

a compile-time representation of a bound or top-level variable.

A �nal detail: In order to support macros that introduce �xed quoted

symbols into their expansions, the compilation routine for quote must re-

place generated names with their underlying symbols. An example of a

macro for which this matters is

(define-syntax cell

(syntax-rules ()

((cell ?x)

(list 'cell

(lambda () ?x)

(lambda (new) (set! ?x new))))))

The output of the transcription function will be something like

([list 17] ([quote 17] [cell 17]) ...)

and we need to make sure that the expression ([quote 17] [cell 17])

delivers the symbol cell, not a generated name.

� � �

In the particular case where the compiler's output is Scheme, the \com-

piler" is a Scheme-to-Scheme macro expander of the sort found in several

papers on the subject. That macro expansion algorithms are often presented

as recursive source-to-source preprocessors has obscured the fact that it is

4



(define (compile exp env)

(cond ((name? exp) (compile-variable exp env))

((pair? exp)

(if (name? (car exp))

(let ((den (binding env (car exp))))

(cond ((special? den)

(compile-special-form den exp env))

((macro? den)

(compile-macro-application den exp env))

(else

(compile-application exp env))))

(compile-application exp env)))

((literal? exp) (compile-constant exp))

(else (syntax-error "invalid expression" exp))))

(define (compile-macro-application mac exp env-of-use)

(let* ((uid (generate-unique-id))

(new-exp (transcribe mac exp env-of-use uid)))

(compile new-exp (bind-aliases uid mac env-of-use))))

(define (transcribe mac exp env-of-use uid)

(let* ((env-for-expansion (bind-aliases uid mac env-of-use))

(rename (lambda (name)

(generate name uid)))

(compare (comparison-procedure env-for-expansion)))

((macro-transcribeer mac) exp rename compare)))

; Create an environment suitable for processing a macro expansion.

(define (bind-aliases uid mac env-of-use)

(let ((env-of-definition (macro-env-of-definition mac)))

(lambda (name)

(if (and (generated? name)

(eqv? (generated-uid name) uid))

(env-of-definition (generated-name name))

(env-of-use name)))))

; Environments are procedures that map names to denotations.

(define (binding env name)

(env name))

(define (name? x)

(or (symbol? x) (generated? x)))

Figure 1: Expanding macros

5



not necessary to fully expand the entire program applications before com-

pilation or interpretation can proceed. Macro expansion can be easily per-

formed concurrently with compilation or interpretation, even when macros

respect lexical scoping.

Three implementations of lexically scoped macros and the syntax-rules

pattern language are available on the Internet in directory pub/scheme/doc/

on nexus.yorku.ca:

� simple-macros.tar.Z | the implementation from which Figure 1

was extracted.

� syntax-case.tar.Z | Kent Dybvig's system, as described in [6].

� synclo.tar.Z | Chris Hanson's implementation based on syntactic

closures, as described in [7].

� � �

Thanks to Brian Reistad for comments and corrections.

References

[1] Alan Bawden and Jonathan Rees. Syntactic closures. 1988 ACM Con-

ference on Lisp and Functional Programming, pages 86{95.

[2] William Clinger. Macros in Scheme. Lisp Pointers IV(4): 17{23,

October{December 1991.

[3] William Clinger. Hygienic macros through explicit renaming. Lisp Point-

ers IV(4): 25{28, October{December 1991.

[4] William Clinger and Jonathan Rees (editors). The revised

4

report on

the algorithmic language Scheme. Lisp Pointers IV(3): 1{55, July{

September 1991.

[5] William Clinger and Jonathan Rees. Macros that work. 1991 ACM Sym-

posium on Principles of Programming Languages, pages 155{162.

[6] R. Kent Dybvig. Writing macros in Scheme with syntax-case. Indiana

University Computer Science Department technical report #356, June

1992.

6



[7] Chris Hanson. A syntactic closures macro facility. Lisp Pointers IV(4):

9{16, October{December 1991.

[8] Eugene Kohlbecker, Daniel P. Friedman, Matthias Felleisen, and Bruce

Duba. Hygienic macro expansion. 1986 ACM Conference on Lisp and

Functional Programming, pages 151{159.

[9] Eugene E. Kohlbecker and Mitchell Wand. Macro-by-example: Deriving

syntactic transformations and their speci�cations. 1987 ACM Sympo-

sium on Principles of Programming Languages, pages 77{84.

7


