
Compilation By Program Transformation

Richard Andrews Kelsey

YALEU/CSD/RR #702
May, 1989

c© Copyright by Richard Andrews Kelsey 1989
All Rights Reserved

Compilation By Program Transformation

A Dissertation
Presented to the Faculty of the Graduate School

of
Yale University

in Candidacy for the Degree of
Doctor of Philosophy

by
Richard Andrews Kelsey

May, 1989

Abstract

Compilation By Program Transformation

Richard Andrews Kelsey
Yale University

1989

This disseration describes a simple compiler, based on concepts from denotational
semantics, that can be used to compile standard programming languages and pro-
duces object code as efficient as that of production compilers. The compiler
uses only source-to-source transformations. The transformations are performed
on programs that have been translated into an intermediate language resembling
the lambda calculus. The output of the compiler, while still in the intermediate
language, can be trivially translated into machine code for the target machine.
The compilation by transformation strategy is simple: the goal is to remove any
dependencies on the intermediate language semantics that the target machine can-
not implement directly. Front-ends have been written for Pascal and BASIC and
the compiler produces code for the MC68020 microprocessor.

Preface to the “2012 edition”

This is a version of Richard Kelsey’s 1989 Yale doctoral dissertation, lightly
hacked so that it will compile in a 2012 LaTeX. This version also has mildly
improved typography: non-ugly fonts, single-spaced text, useful PDF metadata,
and active hypertext links.

Around 2010, I discovered that Richard Kelsey’s doctoral dissertation from
Yale had vanished from the net. Yale’s Computer Science Department no longer
had it on their web page. Worse, Richard himself no longer had a PostScript or
PDF copy.

This is a shame: Kelsey’s dissertation is a fine piece of work. It’s one of
about 5–6 items I recommend to students who want to learn the technology of
functional-language / lambda-calculus compilers. Among other things, it was ex-
tremely influential on the design of the rather well-known SML/NJ compiler de-
scribed in Appel’s Compiling with Continuations book. I was reduced to lending
out my personal hardcopy to my graduate students with the strict injunction not to
lose it or put damp coffee mugs on it. Or you could pay for a large, low-quality,
scanned version from University Microfilms International.

Then, in November of 2011, Richard stumbled over the 1989 LaTeX source
for his dissertation and sent it to me, where it sat on my hard-drive until April the
following spring, when I have taken a Saturday afternoon and gotten it to compile
in a modern LaTeX.

Here’s what I did to Kelsey’s original source:

• Ported it from 1980’s-era LaTeX to LaTeX 2e. Besides having to port
the obsolete yalethesis.sty style package (see below), there was almost
nothing to do here.

• Killed the archaic yalethesis.sty style file, retaining just enough of its
API (mostly the tech-report titlepage machinery) to compile the document.

• Switched from Knuth’s awkward Computer Modern font to a more reason-

v

vi

able Times Roman and moved the document to LaTeX’s book class. This
tightened the document up from 120 pages of excessively spaced lines to
107 pages of easier-on-the-eyes single-spaced text.

• Fixed some bad line breaks that shoved material out into right margin.

• Set up the document for two-sided page layout.

• Fixed a typesetting bug in the original document that prevented the bibliog-
raphy from being typeset: the original document had \samepage declara-
tions in chapters 8 and 9 that weren’t bounded inside a {. . .} scope. This
caused the entire bibliography to get typeset onto a single, very long page.

• Added LaTeX’s hyperref package, to get intra-document links (e.g., ac-
tive table of contents, section refs and bib cites) and to set PDF metadata
properties (author, title, subject, and keywords), which should help search
engines index the document.

• Undid three ugly hacks Kelsey used that are no longer needed with modern
LaTeX:

– In two places, Kelsey had been forced to insert the actual text for multi-
cites that LaTeX 2.09 wouldn’t split across a line.

– He \input an empty file for bug-workaround reasons that I don’t un-
derstand. In any event, they do not appear to pertain in 2012.

I’ve taken the trouble to list out each of these issues to make the point that
the text is otherwise completely unaltered from the LaTeX used to produce the
original Yale Tech Report YALEU/CSD/RR #702 of Kelsey’s dissertation.

However, if you intend to use this document to produce citations to Kelsey’s
work, be aware that the re-typesetting I’ve done has altered the pagination of the
text—so if your cites include page numbers, you’ll need to make clear that you
are referring to this particular “second edition” document, not the original Tech
Report from Yale.

Olin Shivers
Northeastern University
April 14, 2012

Contents

Acknowledgements xi

1 Introduction 1
1.1 The problem . 1
1.2 Compilation by program transformation 2

1.2.1 Source code into intermediate language 5
1.2.2 Making the program linear 5
1.2.3 Adding continuations . 5
1.2.4 Code improvements . 5
1.2.5 Adding environments . 6
1.2.6 Register allocation . 6
1.2.7 Extensions . 6

1.3 Other solutions . 7
1.3.1 Multiple source languages 7
1.3.2 Correctness . 7
1.3.3 Efficient output . 8
1.3.4 Conclusion . 8

2 Semantics 11
2.1 The compiler’s intermediate language 11

2.1.1 The store . 11
2.1.2 Notation . 12
2.1.3 Syntax . 12
2.1.4 Domain equations . 13
2.1.5 Semantic functions . 13
2.1.6 Auxiliary functions . 16

2.2 The machine language . 17
2.2.1 Abstract syntax . 17

vii

viii CONTENTS

2.2.2 Domain equations . 18
2.2.3 Semantic functions . 18
2.2.4 Auxiliary functions . 19

3 Front Ends 21
3.1 Identifiers and syntax . 22
3.2 Primitive procedures . 23
3.3 Locations . 25
3.4 Global environment . 25
3.5 Procedure call and return . 25
3.6 Recursion . 26
3.7 Pascal examples . 27

3.7.1 Data structures . 29
3.7.2 Compound statements 29
3.7.3 Procedures and functions 30

3.8 Factorial in Pascal . 32

4 Ordering Calls 35
4.1 Making code linear . 35
4.2 The transformation . 36
4.3 Factorial example . 38

5 Continuation Passing Style 41
5.1 Converting code into CPS . 41
5.2 The transformation . 42
5.3 Notation and basic blocks . 45
5.4 Restrictions . 47
5.5 Factorial example . 47

6 Code Improvements 51
6.1 Local code transformations . 51

6.1.1 Beta substitution . 52
6.1.2 Operation specific transformations 53
6.1.3 Simplifying procedure calls 54
6.1.4 Evaluation for control 55
6.1.5 Local location removal 56

6.2 Flow analysis . 57
6.2.1 The algorithm . 57

CONTENTS ix

6.2.2 An example . 58
6.3 Removing locations . 59

6.3.1 Examples . 59
6.3.2 The transformation . 60

6.4 Factorial example . 64
6.4.1 Local transformations 64
6.4.2 Flow analysis . 66
6.4.3 Removing locations . 68

7 Implementing Environments 69
7.1 Environments . 69
7.2 The transformation . 70
7.3 Improvement transformations . 73
7.4 Locations . 75
7.5 Popping the stack . 76
7.6 Factorial example . 77

8 Resource Allocation 79
8.1 Machine resources . 79
8.2 Instruction selection and scheduling 79
8.3 Register allocation . 80
8.4 Identifier renaming . 81
8.5 Finishing up . 81
8.6 Factorial example . 82

9 Compiler Extensions 85
9.1 First-class continuations . 85
9.2 Tail recursion in Scheme . 86
9.3 Latent types . 86
9.4 Lazy evaluation . 86
9.5 Non-local return . 86

10 Results 89
10.1 Timings . 89
10.2 Results and future work . 90

Bibliography 93

x CONTENTS

Acknowledgements

I would like to thank my advisor, Paul Hudak, for years of support, encourage-
ment, advice and all the rest, but especially for allowing me to do what I wanted
to do. My readers, Marina Chen, Alan Perlis, and William Clinger, provided an
amazingly broad range of insight into this dissertation.

The work presented here is inextricably intertwined with that of the other
members of the T project: Norman Adams, David Kranz, Rick Mohr, Jim Philbin,
and Jonathan Rees. I can only hope that I have been as helpful to them as they
were to me. Many of the ideas in this dissertation are a direct result of conversa-
tions I have had with Jonathan Rees. Norman Adams wrote the assembler used in
the current implementation of the compiler.

I would also like to thank Dana Angluin, who twice awakened my interest in
computer science, and David and Deirdre Byrne who provided a lot of love and
silliness in a series of homes, notably at 374 Crown Street.

This work was supported the National Science Foundation under grant number
DCR-8451415 and the Department of Energy under grant number DOE FG02-
86ER25012.

xi

xii ACKNOWLEDGEMENTS

Chapter 1

Introduction

1.1 The problem
There are many problems with compilers:

1. Different ones are needed for different languages.

2. Different ones are needed for different machines.

3. Many do not implement the source language correctly.

4. Their output is often inefficient.

5. They run slowly.

An ideal compiler would compile any language for any machine, produce very
efficient code very quickly, and never make a mistake. This dissertation is not
about such a compiler. The compilation method described here can be used to
write a compiler that will compile many languages for some machines, produce
efficient code, and seldom make a mistake. The main issues being addressed are
compiling different source languages, correctness, and producing efficient output.

Compilation is done here using source-to-source transformations on programs
in an intermediate language based on the lambda calculus. The compiler takes as
input a program in the intermediate language and produces an equivalent program,
also in the intermediate language, that can be run on the target machine. The
transformations implement the parts of the intermediate code that the machine
does not.

1

2 CHAPTER 1. INTRODUCTION

How does this solve the problems? The intermediate language has the variable
binding and control flow of the lambda calculus and also gives direct access to the
target machine’s instructions and memory. This makes it easy to write translators
for different source languages. The correctness comes from using only simple
source-to-source transformations that can be shown to be correct as well as be-
ing easy to implement correctly. Efficient output results from the use of many
transformations that simplify the program during the compilation process.

In this thesis the ability to compile multiple source languages is demonstrated
by actually compiling programs written in several languages and by appeal to the
known generality of the lambda calculus. The efficiency of the output is shown
by comparing the speed of the compiled code with that produced by a hand-coded
compiler. While speed of compilation is not one of the issues being addressed
here, a compiler must run reasonably quickly to be usable, and measurements of
compilation speed are given. The compilation method is not tied to any particular
machine but it has only been used to compile code for the Motorola 68020 mi-
croprocessor [Motorola 85] and I make no claims as to the ease of porting it to a
different architecture.

Demonstrating the correctness of an actual compiler (as opposed to just a com-
pilation strategy or algorithm) is difficult. The current implementation of the com-
piler consists of thousands of lines of Scheme code. It is hard to imagine how such
a large program could be proven correct. The transformations that comprise the
compiler’s algorithm are specified exactly and can be seen to be correct. Showing
the absolute correctness of the implementation is more difficult. The correctness
of the current implementation of the compiler is shown by running the output of
the implementation. Compiling test files tests the implementation fairly well as
the simplicity and independence of the transformations allows relatively simple
test cases to exercise every part of the compiler.

1.2 Compilation by program transformation
The compiler works entirely by source-to-source transformations. It is unusual in
that its output and input are in the same language. The program to be compiled
is first translated into the compiler’s intermediate language and then transformed
into an equivalent program, still in the same intermediate language. This method
of compilation is possible because, although the two languages have completely
different semantics, the syntax of the target machine’s language is a subset of
that of the intermediate language. The program produced by the compiler has the

1.2. COMPILATION BY PROGRAM TRANSFORMATION 3

same meaning as the initial program when interpreted either as an intermediate
language program or as a machine language program.

Si = intermediate language semantics
Sm = machine semantics
P = initial program
C = compiler

Si(P) = Si(C(P)) = Sm(C(P))

Compilation consists of transforming the program in such a way that it has
the same meaning in the intermediate language and the machine language. The
compilation transformations are based on the similarities and differences of the
semantics of the two languages as expressed in denotational descriptions. The
intermediate language is the call-by-value lambda calculus with procedure and
data constants [Plotkin 75] and the addition of an implicit store. The machine
language is an assembly language with a syntax made to look like the lambda
calculus. The machine is assumed to be a Von Neumann machine with a store and
register-to-register instructions. The identifiers in the machine language represent
the machine’s registers. Denotational semantics descriptions [Stoy 77, Gordon 79,
Schmidt 86] for both languages are presented in Chapter 2.

In motivating the transformation methodology, it is helpful to consider the
basic properties of the source and target languages.

Properties of the Intermediate Language

1. Call and return

2. Lexically nested scoping

3. Very large set of homogeneous identifiers

4. A store

5. Call by value

Properties of the Machine Language

1. Goto

2. Flat scoping

4 CHAPTER 1. INTRODUCTION

3. Very small set of nonhomogeneous identifiers

4. A store

5. Call by value

As can be seen the first three properties are very different for the two lan-
guages. The compilation transformations are based on these differences.

Compilation consists of translating the program into the intermediate language
and then performing four global transformations. In addition, numerous transfor-
mations are done to improve the efficiency of the final code. Most of these are
applied after the introduction of explicit continuations and before environments
are introduced.

Compilation is performed in five steps:

1. Translating to intermediate code

2. Making the program linear

3. Adding explicit continuations

4. Adding explicit environments

5. Identifier renaming / register allocation

The translation into intermediate code is a necessary first step. Making the pro-
gram linear and adding explicit continuations implement call and return in terms
of gotos that pass arguments. Adding environments uses the store to implement
the lexical scoping of the intermediate language. Finally, register allocation and
identifier renaming restrict the program to using only the identifiers of the target
language. The resulting program depends only on the properties of the store, the
call-by-value semantics of the source and target languages, and the overlap in their
identifier scoping rules. Thus its meaning is the same in both languages.

Each step in the compilation process restricts the form of the code, and the
steps that follow must preserve these restrictions. The code expands as the com-
piler moves more and more of the work of the intermediate language’s semantics
into the program. At the same time the code improvement transformations work
to reduce the size of the code as every expansion of the code provides more op-
portunities to improve it.

1.2. COMPILATION BY PROGRAM TRANSFORMATION 5

1.2.1 Source code into intermediate language
Initially, a front-end specific to the source language translates the program into the
compiler’s intermediate language. As the intermediate language is similar to the
lambda calculus, a front-end is similar to a denotational semantics for the source
language. This makes it easy to write correct front-ends.

1.2.2 Making the program linear
This transformation gives an explicit order to the applications in the program and
introduces identifiers for all temporary values. In the linear code arguments in
applications are never applications except for arguments to applications of lambda
expressions with only one argument.

1.2.3 Adding continuations
The previous transformation introduced lambda expressions to bind the results of
applications. Here these expressions are moved into the applications themselves
as continuations. The transformation is given in [Plotkin 75], made slightly more
complex due to a more complicated syntax and a desire to limit the size of the
resulting program. Every procedure takes an additional argument that is the con-
tinuation to be called when the procedure has finished. Returns in the procedure
are replaced with calls to the continuation. The resulting program is in ‘continua-
tion passing style’ (CPS).

After conversion to continuation passing style the code is more structured: 1)
arguments to calls are never calls, 2) the bodies of lambda expressions are always
calls, 3) there are no longer any returns, just calls. The parts of the compiler that
follow must preserve the continuation passing nature of the transformed program.

1.2.4 Code improvements
Conversion to continuation passing style is followed by a number of code im-
proving transformations. These include both local transformations such as beta-
substitution and two global transformations, one of which is based on flow anal-
ysis. These transformations could have been done before the transformation of
the program into CPS, but they are simpler when done afterwards due to the in-
creased regularity of the code. For example, beta substitution may be done with-

6 CHAPTER 1. INTRODUCTION

out reference to side-effects as arguments to applications are never applications
themselves.

1.2.5 Adding environments
This transformation adds explicit environments to the program, much as the con-
version to CPS added continuations. Calls are added to the program to construct
the environments and to write and read the values they contain. Procedures have
their lexical environments passed to them as arguments. After this transforma-
tion the only abstractions that may have free identifiers are continuations to calls
to primitive procedures. As procedures no longer return or have free identifiers,
procedure calls have become gotos that pass arguments.

The code could now run on a machine that had a register for every different
identifier used in the program. The final phase, register allocation, replaces the
identifiers with the names of the registers on the target machine.

After the environments have been added, more code improving transforma-
tions are applied. Examples of these include removing unused environments and
removing calls that write into locations that the program never reads.

1.2.6 Register allocation
Register allocation is no different than in any other compiler. Once registers have
been allocated to hold values, calls are introduced into the code to move the val-
ues to and from registers and temporary locations in the stack. At this point every
identifier’s value resides in a single register throughout its lifetime, and every iden-
tifier is renamed to be the register that contains its value. The program can now be
viewed as an assembly language program (with a somewhat unusual syntax) for
the target machine.

1.2.7 Extensions
Some programming language features require direct manipulation of the struc-
tures the compiler introduces. For example, many languages have some form of
non-local return from procedures or loops that is often implemented by summar-
ily removing continuations from the stack. The compiler can accomodate such
nonstandard use of continuations (or lexical environments or stores) through the
use of special primitive procedures and possibly additional compilation transfor-
mations.

1.3. OTHER SOLUTIONS 7

1.3 Other solutions
A great deal of effort has been expended on improving compilers and solving the
problems listed earlier. In this section I compare the methods described in this
thesis with some other solutions to the same problems.

1.3.1 Multiple source languages
The standard way of producing a compiler that can compile more than one lan-
guage is to write a compiler for a general intermediate language and translators
that translate the different source languages into the intermediate language. This
is exactly what is done here. The usefulness of this approach depends entirely on
the generality of the intermediate language and the ease of writing translators for
different programming languages. The intermediate language I use is extremely
powerful as it allows lexical closures and recursive procedures.

1.3.2 Correctness
Another method for solving the problem of needing different compilers for differ-
ent languages, and simultaneously addressing the need for compiler correctness, is
to generate compilers automatically from a description of the input language. As
long as the compiler generating program is correct all of the generated compilers
will be correct (or at least as correct as the input to the compiler generator).

There have been several such compiler generators, such as those in
[Paulson 82] and [Lee 87], written using denotational semantic [Stoy 77,
Gordon 79, Schmidt 86] or attribute grammar [Knuth 68] descriptions of the
source languages as input. The generated compilers tend to be very slow and
their output is inefficient. The problem appears to be that the semantic specifica-
tions provide a description of the programming language that is not particularly
appropriate for compilation to machine code. The generated compilers typically
do not produce native machine code and thus their output needs to be either in-
terpreted, with a resulting loss in efficiency, or compiled further, which requires
another compiler.

The crucial distinction between the semantics based compiler generators and
the compilation method described here is that the transformational compiler is a
general compiler, not a compiler generator. While both approaches translate the
source program into a form of the lambda calculus, here the identifier bindings,
continuations, and the store of the source program are implemented using the

8 CHAPTER 1. INTRODUCTION

bindings and continuations of the lambda calculus along with an implicit store.
This puts restrictions on the ways in which the bindings, continuations, and store
can be used by the source program and thus allows the compiler to implement
them efficiently. In this way much of the utility and generality of using the lambda
calculus to describe programming languages can be obtained without paying the
performance cost of running general lambda calculus programs.

Another approach to compiler correctness is to treat a compiler as any other
program and attempt to prove formally that the algorithms or the program itself are
correct as in [Clinger 84]. Again, denotational semantics can be used to specify
the desired behavior of the compiler. This approach has all of the general problems
of proving program correctness as described in [DeMillo 78].

1.3.3 Efficient output
There are many different techniques used to improve the efficiency or reduce the
size of the output of compilers [Aho 86, Barrett 79]. Here many of these same
optimizations have been recast in the form of program transformations. Some
traditional code improvements, such as boolean short-circuiting, are not done as
single transformations but come about throughout the interaction of several sim-
pler transformations.

Program transformations have been used in several compilers to improve the
quality of the code produced. Lists of useful transformations have been published
[Standish 76]. The usefulness of program transformations comes from the ease
of proving individual transformations correct and of adding new transformations
to a transformation based system. Rabbit [Steele 78], S1 [Brooks 82], and Orbit
[Kranz 86], as well as others, use many of the local code improvement transfor-
mations used here.

1.3.4 Conclusion
The compilation method presented here encompasses parts of several other ap-
proaches to compiler design. Passing continuations as explicit arguments has been
used in other compilers, as in [Steele 78, Kranz 86]. Passing environments as ex-
plicit arguments, either in parts or as an aggregate object, has also been done
before in [Johnsson] and [Feeley]. The use of an intermediate language to allow
compilation of more than one language is quite common, as is the use of pro-
gram transformations. Indeed, there is at least one other compiler based solely on
program transformations [Boyle 84, Boyle 86].

1.3. OTHER SOLUTIONS 9

Here all of these techniques have been put together in a common framework.
Only transformations are used and only on programs in one intermediate lan-
guage. The semantics of the intermediate language and of the target machine lan-
guage are specified and the compilation transformations are based directly on the
differences and similarities of the two languages. The result is a simple, correct,
and efficient approach to compilation.

10 CHAPTER 1. INTRODUCTION

Chapter 2

Semantics

2.1 The compiler’s intermediate language
The compiler’s intermediate language is essentially the call-by-value lambda cal-
culus with procedure and data constants and with the addition of a store. It also
has three distinguished types of abstractions, all having the same semantics. The
different abstraction forms allow the compiler to distinguish between continua-
tions and other abstractions and make the compiler’s transformations simpler.

In addition, identifiers have associated run-time types that specify the size of
the data the identifier represents. The compiler uses these types when generating
code to move values from place to place in the machine and requires that any
identifier be bound to values of only one size. Primitives must also specify the
sizes of any values that they return. In the current implementation a size is just the
number of bits in the machine representation of a value.

For simplicity, the semantics given here does not include any error checking.
Possible errors include referencing unbound identifiers, binding an identifier to a
value that is not of the correct size, or calling a procedure with the wrong number
of arguments. Primitives must be called with the right number of both continua-
tions and arguments.

2.1.1 The store
The main difference between the compiler’s internal language and the lambda
calculus is the former’s implicit store. As only the primitive procedures have
access to the store, and the behavior of the primitive procedures is not specified in

11

12 CHAPTER 2. SEMANTICS

the denotational description of the internal language, the store is largely invisible
in the semantics as well as in the language itself. However, the presence of the
store does force the use of continuations in the semantics to specify the order in
which applications of primitive procedures use and modify the store.

2.1.2 Notation
t* a sequence of zero or more ts
t+ a sequence of one or more ts
s§t sequence concatenation
〈. . .〉 sequence formation
s ↓ n the nth element of sequence s
s † n s with the first n elements removed
#s the length of sequence s
x in D injection of x into domain D
x|D projection of x to domain D
ρ[x/i] environment update “ρ with x for i”

2.1.3 Syntax
K ∈ Con constants
I ∈ Ide identifiers
P ∈ Pri primitives
L ∈ Pro procedures
−→ (proc I (I*) E)

C ∈ Eco continuations
−→ (lambda (I*) E) | (cont (I*) E)

A ∈ App applications
−→ (C E*) | (P (C*) E*) | (return P E*)

E ∈ Exp expressions
−→ K | I | L | C | A |(block E* E0)

In code examples primitives will be written with a $ before their names, as in
$add. Constants will be preceded with a ’, such as ’100.

2.1. THE COMPILER’S INTERMEDIATE LANGUAGE 13

2.1.4 Domain equations
ν ∈ N natural numbers
α ∈ L locations

M miscellaneous
F = E*→ K→ C procedure values

ε ∈ E = L+M+ F expressed values
σ ∈ S = L→ E stores
ρ ∈ U = Ide→ E environments
θ ∈ C = S→ S command continuations
κ ∈ K = E→ C expression continuations
φ ∈ G = E*→ N→ C primitive continuations

Primitives both return a list of results and specify which actual continuation to
call (as well as accessing and updating the store).

There is no answer domain as programs do not return answers but instead
return a modified store.

2.1.5 Semantic functions
Ki : Con→ E
Pi : Pri→ E*→ G→ C
Ei : Exp→ U→ K→ C
Ei* : Exp*→ U→ (Exp*→ C)→ C

Ki translates data constants into values. It will not be specified further. Pi

specifies the behavior of primitives, which are the procedure constants. Examples
of primitives are given in the next chapter. Ei gives meanings to expressions as
follows:

Ei[[K]] = λρκ . κ (Ki[[K]])

Ei[[I]] = λρκ . κ (ρ [[I]])

Constants are handed to Ki and identifiers to the environment. The result is
passed to the continuation.

Ei[[(lambda (I*) E)]] =
λρκ . κ((λε*κ′ . Ei[[E]] (extends ρ I* ε*) κ′) in E)

14 CHAPTER 2. SEMANTICS

Ei[[(cont (I*) E)]] =
λρκ . κ((λε*κ′ . Ei[[E]] (extends ρ I* ε*) κ′) in E)

Ei[[(proc I (I*) E)]] =
λρκ . κ((λε*κ′ . Ei[[E]] (extends ρ (〈I〉 § I*) ε*) κ′) in E)

The continuation is passed a λ-expression that makes a new environment by
extending the old one with the actual parameters bound to the formal parameters
and then evaluates the expression in the new environment. extends is an auxiliary
function for building environments.

These are the three abstraction expressions in the intermediate language. The
only difference between them is syntactic in that one identifier in the proc ex-
pressions is distinguished; indeed lambda and cont have identical semantics.
The different abstraction forms are used to distinguish between abstractions that
get passed an explicit continuation and those that are continuations. Initially the
program contains only (lambda (I*) E) abstractions. The conversion to CPS
changes these to (proc I (I*) E) and introduces explicit continuations (cont
(I*) E). The distinction between (lambda (I*) E) and (cont (I*) E) is
made only for the purposes of exposition.

Ei[[(C E*)]] =
λρκ . Ei[[C]]ρ(λε . Ei*(permute([[E*]]))

ρ
(λε* . ((λε* . (ε | F) ε* κ)

(unpermute ε*))))

The C is evaluated followed by the E* in the order specified by permute.
unpermute puts the resulting values back into the original order. The value of
C is called on the values and the continuation. permute and unpermute are used
to keep from specifying the order in which the arguments are evaluated and are
defined in the section on auxiliary functions. The evaluation of C does not affect
the store so it need not be included in the call to permute.

The semantics would allow any expression to be applied, but as the com-
piler has no default calling convention, the syntax allows only continuations here.
When the procedure is a continuation no calling convention is needed, as code for
the continuation can be generated in-line; there need be no actual procedure call
at all.

2.1. THE COMPILER’S INTERMEDIATE LANGUAGE 15

Ei[[(P () E*)]] =
λρκ . Ei*(permute [[E*]])

ρ
(λε* . ((λε* .Pi[[P]] ε* (λε*ν . κ(ε* ↓ 1)))

(unpermute ε*)))

Here a primitive is applied with no continuation arguments. The value argu-
ments are evaluated and passed to Pi with the primitive and a continuation. The
continuation ignores the number it gets and calls the actual continuation with the
first value (not getting exactly one value here is actually an error). A continuation
argument will be added to these applications when the program is converted to
CPS.

Ei[[(P (C*) E*)]] =
λρκ . Ei*(permute [[E*]])

ρ
(λε* . ((λε* .Pi[[P]] ε* λε*ν . Ei([[C*]] ↓ ν) ρ λε . (ε | F) ε* κ)

(unpermute ε*)))

Here the continuations to the application are specified. The number returned
by Pi is used to pick out one of the continuation arguments. This argument is
evaluated using Ei and the result is called on the values Pi returns. The continua-
tion arguments are not passed to Pi, in order to restrict the way in which they may
be used. With the semantics as given here the continuations have known extent
and a known use.

Ei[[(return P E*)]] =
λρκ . Ei*(permute [[E*]])

ρ
(λε* . ((λε* .Pi[[P]] ε* λε*ν . κ(ε* ↓ 1))

(unpermute ε*)))

This semantics is identical to (P () E*). As will be described later, there are
requirements and restrictions on the use of return expressions.

Ei[[(block E0)]] = Ei[[E0]]

Ei[[(block E1E+)]] =
λρκ . Ei[[E1]] ρ λε . Ei[[(block E+)]] ρ κ

16 CHAPTER 2. SEMANTICS

block is a sequencing construct that evaluates its expressions in order and
returns the result of the last, ignoring any intermediate results.

Ei*[[]] = λρκ . κ〈 〉

Ei*[[E0 E*]] =
λρκ . Ei[[E0]] ρ λε0 . Ei*[[E*]] ρ (λε* . κ (〈ε0〉 § ε*))

This is much like block except that the results are gathered into a sequence
and passed to the continuation.

2.1.6 Auxiliary functions
extends : U→ Ide*→ E*→ U
extends =
λρI*ε* .#I* = 0→ ρ,

extends (ρ[(ε* ↓ 1)/(I* ↓ 1)]) (I* † 1) (ε* † 1)

extends creates a new environment by adding the bindings of the Ide* to the
E* to the given environment.

permute : E*→ E* [language dependent]

unpermute : E*→ E* [inverse of permute]

permute and unpermute are borrowed from the Scheme semantics in
[Rees 86]. permute determines the order in which the arguments to a call are
evaluated. Given the way these functions are used, this order may depend only on
the number of arguments as that is the only information shared by permute and
unpermute. Ideally this order would depend on the argument expressions them-
selves and the surrounding code. The simplest solution, as this is not an important
point, is to assume that unpermute nondeterministically does the right thing in
reordering the values of the arguments. In any case, when compiling a language
with a specified order of evaluation for arguments, such as left-to-right, permute
and unpermute are modified to follow that order.

2.2. THE MACHINE LANGUAGE 17

2.2 The machine language
The machine language is an assembly language written in the syntax of the in-
termediate language and has a much simpler semantics. The machine is assumed
to be a Von Neumann machine with a store and register-to-register instructions.
Identifiers represent the machine’s registers and primitive procedures are the ma-
chine’s instructions. The semantics of lambda expressions depends upon their
context. lambda expressions that are not continuations to calls to primitive proce-
dures represent code pointers and their identifiers are ignored. The identifiers in
a continuation to a call to a primitive procedure represent the registers in which
the results of the instruction appear. As an example, here is the interpretation of a
call to a primitive procedure for a two-address add instruction both in the machine
language’s syntax and in a conventional assembler syntax:

($add ((lambda (r1) ...)) r1 r2) ⇐⇒ add r1,r2

2.2.1 Abstract syntax
K ∈ Con constants
I ∈ Ide identifiers
P ∈ Pri primitives
C ∈ Eco continuations
−→ (lambda (I*) A)

A ∈ App applications
−→ (P (C*) E*)

E ∈ Exp expressions
−→ K | I | C

The machine language syntax is a restriction of the intermediate language:
(block E* E0), (proc I (I*) E), and (P (C*) E*) are not allowed. The
body of a lambda expression must be an application. Calls to lambda expressions
are not needed. This is a consequence of the machine language’s lack of lexical
scoping. In the intermediate language calls to lambda expressions are needed to
bind the values of lambda expressions to identifiers as the expressions cannot be
duplicated without increasing the size of the program. In the machine language
the value of a lambda expression depends only on the expression itself and not
on its lexical context. The lambda expressions represent pointers to code and are
thus a type of constant and can be duplicated freely.

18 CHAPTER 2. SEMANTICS

2.2.2 Domain equations
ν ∈ N natural numbers
α ∈ L locations

M miscellaneous
F = C procedure values

ε ∈ E = L+M+ F expressed values
σ ∈ S = (L+ Ide)→ E stores
θ ∈ C = S→ S command continuations
φ ∈ G = E*→ N→ C primitive continuations

There are no environments and no expression continuations. Procedures no
longer take actual parameters or continuations. Values in the machine are passed
to procedures by side-effecting the store. The store now includes values for iden-
tifiers.

2.2.3 Semantic functions
Km : Con→ E
Pm : Pri→ E*→ G→ C
Am : App→ C
Lm : Eco→ E*→ C
Em : Exp→ S→ E
Em* : Exp*→ S→ E*

Unlike their intermediate language counterparts Km, Pm, Em, and Em* do not
take a continuation as an argument and simply return values. Em and Em* do
not have environment arguments but do require the store in which to look up the
values of identifiers. Am has been split off from Em as applications are no longer
expressions. Lm is called on the continuations to calls to primitives.

The definition of Km is again deliberately omitted.

Em[[K]] = λσ .Km[[K]]

Em[[I]] = λσ . σ I

Identifiers get their values from the store as they now represent side-effectable
registers.

2.2. THE MACHINE LANGUAGE 19

Em[[(lambda (I*) A)]] = λσ . (Am[[A]]inE)

A procedure simply calls Am on its body. The identifiers and the store are
ignored.

Am[[(P () E*)]] =
λσ . Pm[[P]] (Em*[[E*]] σ)(λε*νσ . σ) σ

Permute and unpermute are not needed here or in the following as the argu-
ments to procedures cannot be applications and so cannot affect the store; thus
the order of evaluation of arguments has no effect on the meaning of the program.
The values the primitive returns are ignored.

Am[[(P (C+) E*)]] =
λσ . Pm[[P]] (Em*[[E*]] σ)(λε*νσ . Lm([[C+]] ↓ ν) ε* σ) σ
The returned values and the selected continuation are passed to Lm. In the

intermediate language’s semantics the continuation is evaluated using Em and then
called on the values.

Lm[[(lambda (I*) A)]] =
λε* . λσ .Am[[A]] (extends I* ε* σ)

A new store is made with the identifiers I* having the values ε*. Note that this
is different from the value of a lambda as an expression; in that case the identifiers
are ignored as shown in the definition of Em. The body of the lambda expression
is evaluated with the new store.

Em*[[]] = λσ . 〈 〉
Em*[[E0 E*]] =
λσ . 〈Em[[E0]] σ 〉 § Em*[[E*]] σ

The store is used here instead of the environment. There are no continuations
as the values can just be returned.

2.2.4 Auxiliary functions
extends : S→ Ide*→ E*→ S
extends =
λσI*ε* .#I* = 0→ σ,

extends (σ[(ε* ↓ 1)/(I* ↓ 1)]) (I* † 1) (ε* † 1)
extends is exactly the same as before except that it now works on stores instead

of environments.

20 CHAPTER 2. SEMANTICS

Chapter 3

Front Ends

In order to use the transformational compiler a front-end is needed to translate pro-
grams into the compiler’s intermediate language. Different front-ends are needed
for different programming languages. Translations must be provided for three
different aspects of the source language:

1. Control constructs

2. Primitive data structures

3. Primitive operations

The ease of producing a front-end for a particular language is dependent on the
simplicity of its primitive data structures and operations (ignoring any difficulties
that lexical or syntactic analysis may present). The control constructs can be trans-
lated using a simple syntax-directed translator very like a denotational semantics
for the source language. This part of the translation could be derived directly from
a denotational semantics for the source language, much as is done by semantics
based compiler generators. The translator consists of a template, either written by
hand or automatically generated, for every type of expression in the syntax of the
source language that gives an equivalent expression in the intermediate language
in terms of the translations of the expression’s subexpressions. The only require-
ment is that the control flow be easily implemented in the lambda calculus without
direct manipulation of continuations; writing a translator for a logic programming
language, or an object-oriented one, would be quite difficult.

The translation of primitive data structures and operations is more difficult as
it requires knowledge of the target machine architecture and is typically not dealt

21

22 CHAPTER 3. FRONT ENDS

with in denotational semantics. As an obvious example, while most program-
ming languages contain integers as a data type and most machines implement
operations on integers similar to those used in the programming languages, the
matchup is often not exact. The machine’s integers may not be large enough, or
some operations may be missing. Translating more complex domains, such as
string manipulations, or dealing with run-time requirements, such as tagged data
types, can be quite complex. Producing a translator for a language and machine
pair requires designing data structures and instruction sequences appropriate to
both. Argument passing and value returning mechanisms are included here as
they are dependent both on the language being compiled and the target machine.

This is not to say that writing a front-end is necessarily a lot of work. Many
languages (and machines) have similarities that may be exploited. For exam-
ple, the same set of numerical primitive operations and data structures could be
used for FORTRAN and Pascal. The same calling convention could be used on
many different machines for many different languages. Modifications to existing
front-ends, such as adding new control constructs or new primitive data types and
operations is quite simple.

The rest of this chapter covers in more detail the initial translation into the
intermediate language. Language specific optimizations are discussed in subsec-
tion 6.1.2 and compiler modifications in Chapter 9.

3.1 Identifiers and syntax
There are two constraints on identifiers in the output of the front-end: no identifier
may be bound more than once in a program and every identifier must have an
associated size indicating the size of the values to which it will be bound when the
program is run. The sizes used in examples will be either 1) ptr, indicating that
that the identifier represents a machine pointer, 2) a number of bits, or 3) state,
indicating that the identifier stands for the current contents of the registers and
any arguments pushed on the stack. When needed, the size of an identifier will
be written after the identifier, separated by a colon, such as x:16 for a sixteen bit
value.

The front-end may not use either (proc I (I*) ...) or (cont I (I*)

...). These are introduced (and (lambda (I*) ...) removed) during the con-
version to CPS as detailed in Chapter 5.

3.2. PRIMITIVE PROCEDURES 23

3.2 Primitive procedures
As the compiler has no built-in data or procedure constants the front-end must
include a mapping from source language constants to machine data and a set of
primitive procedures that includes all of the machine operations that the source
language requires. The primitive procedures and the descriptions of constants
are not normally specified in denotational semantics but are necessary to compile
programs. For example, the denotational description of Scheme in [Rees 86] does
not specify the the semantics of 17 or + but a Scheme compiler must somehow
translate them into machine data and instructions, and thus a front-end for Scheme
must include these translations. This makes the front-ends machine dependent, in
that an operation such as + may mean different things on different machines as
well as in different languages.

Primitive procedures must provide all of the information that the compiler
needs to generate code to execute the instructions. This information includes:

1. The set of registers the operation requires

2. A description of the operation’s interaction with the store

3. Code improving transformations specific to the operation

4. Code to generate machine instructions

5. The size of the value returned by the primitive, if the primitive is called
without any explicit continuations

In the current implementation primitive operations are created using an object-
oriented programming extension to Scheme provided in T [Rees 84]. As an ex-
ample, presented only to show the amount of code needed to specify a simple
primitive, here is the code for the sixteen bit add instruction on the Motorola
68020 as used by the Pascal front-end.

24 CHAPTER 3. FRONT ENDS

(define-primop add16

((primop.arg-specs self)

’((reg 2 1) (any 3 #f)))

((primop.generate self call block)

(destructure (((#f x y) (call-arguments call)))

(emit block

(add ’w (->ea y) (ea/r x)))))

((primop.simplify self node)

(simplify-integer-add node))

((primop.value-size self) ’(16)))

The add16 primitive does not use the store (which is the default). It requires
one register which must contain its second argument (the first is its continua-
tion). The third argument can be in any register or in memory. The first (and
only) result appears in the register that contained the second argument. There is
code for emitting an add-word instruction using the register of the second argu-
ment and the location of the third. Calls may be simplified using the procedure
simplify-integer-add which performs constant folding. Finally, the result of
the add16 primitive is a sixteen bit value. Primitives that do not return an inter-
esting value specify a return size of zero.

Conditional expressions are implemented using primitives that have more than
one continuation. For example, IF in Pascal can be implemented using a primitive
$if (in the examples primitive procedure names will begin with a ‘$’) that calls
its first continuation if its argument is true and its second otherwise.

IF test THEN do-true-thing ELSE do-false-thing

=⇒
($if ((cont () do-true-thing)

(cont () do-false-thing))

test)

A comparison operation such as < could be implemented either as primitive
returning a boolean value or as a conditional primitive. Conditional primitives
may be used to return boolean values by using value-returning continuations.

x < y

=⇒
($less-than ((lambda () ’true) (lambda () ’false)) x y)

3.3. LOCATIONS 25

3.3 Locations
Locations are pointers into the store. New ones are created using either $push
or $allocate. Both of these take one argument, which is the amount of mem-
ory needed. Locations created using $allocate have indefinite lifetimes; those
created using $push may not be referenced after the program returns from the
lambda expression immediately surrounding the call to $push.

Values are stored in locations using $set-contents which takes four ar-
guments: a location, a size, an offset within the location, and a value. The
value, which must be of the specified size, is stored in the location at the off-
set. $set-contents returns no value (actually, it returns a value of size zero as
returning no value would require the front-end to supply an explicit continuation).
Values are retrieved from locations using $contents which takes the same ar-
guments as $set-contents but without the value. $contents returns the value
found at the offset in the location.

3.4 Global environment
Free identifiers are not allowed in the intermediate language. Programs receive
values from and provide values to the global (external) environment through a lo-
cation that is passed as an argument to the program. The loader constructs this
location at runtime using data the compiler has included in the object file. The
front-end needs to supply the compiler with a description of the global environ-
ment as used by the program. A (lambda (globals:ptr) ...) is wrapped
around the program to receive the global environment. The program treats the
global environment as a location, storing and retrieving the values of global vari-
ables at fixed offsets within it.

3.5 Procedure call and return
The semantics of the intermediate language allows only calls to primitives and
lambda (or the identical cont) expressions. Other values cannot be called directly
as there is no default calling convention and the compiler would not know how to
generate code for the call. Calls to values are done using primitives that specify
the calling and return conventions. These primitives specify which of their argu-
ments is being called. They also have simplifying transformations that are applied

26 CHAPTER 3. FRONT ENDS

if the compiler determines that the value called will be the value of a particular
abstraction expression and that all calls to that value call only that value. The
compiler can then use whatever calling convention is most appropriate for both
the expression whose value is called and the calls to that value. In the (Scheme)
example below the calls to g can be easily identified and only g is called at those
calls; thus the compiler can use a special calling sequence for g. The only expres-
sion that calls f can also be identified, but f is not the only procedure called at that
point so f must use a calling convention specified by the Scheme implementation.

(lambda (a)

(let ((f (lambda () 1))

(g (lambda (x) (x))))

(g a)

(g f)))

The flip side of not having a default calling convention is having no default
return convention. Every lambda expression that is not a continuation to a primi-
tive call must return using (return P E*) expressions. That is, every execution
path through a procedure must end with a return. The primitive in the return

expression gives the protocol to be used in returning from the enclosing (non-
continuation) lambda expression.

In the examples used in this dissertation all primitives that call a value will
have call in their names if they have a continuation argument and return if they
do not. Each calls its first non-continuation argument.

The compiler uses three primitive operations to indicate calls to known ab-
stractions. These call either the values of proc or cont expressions as they are
introduced after CPS conversion when all lambda expressions have been replaced.
$call is used for calls to the values of known proc expressions, $return is used
for calls to continuations to $call calls, and $jump (an exception to the above
naming convention) for calls to the values of other cont expressions.

3.6 Recursion
In the intermediate language recursive procedures can be implemented using lo-
cations. A new location is created and bound to an identifier which is lexically ap-
parent to the procedure. The procedure is then stored in the location, after which
the procedure can reference itself by dereferencing the location. This method is
used as it is both general enough to implement goto (although it cannot be used

3.7. PASCAL EXAMPLES 27

to implement non-local returns) and it is natural to implement in the machine lan-
guage.

((lambda (proc:ptr)

($set-contents () proc:ptr ’ptr ’0 (lambda ...))

...)

($allocate () ’ptr))

Since every procedure must have its own explicit return statements these
procedure calls cannot be tail recursive. The best that can be accomplished is to
return immediately after the procedure call.

(block ($proc-call () some-procedure)

(return $proc-return))

There is a potential problem when iteration is being expressed using a recur-
sive procedure where the recursive call is not tail recursive. This may cause a
continuation stack overflow at runtime as each iteration adds another continuation
to the stack. There are two separate transformations in the compiler that address
this problem. The substitution of known values for identifiers may remove the
troublesome continuation; alternatively, the call may be made properly tail recur-
sive if the continuation turns out to be unnecessary. These transformations will
cause any simple iteration within the body of a single source procedure to be con-
verted into iterative machine code, but will not work for all tail-recursive calls.
Thus to implement Scheme, where calls that are tail-recursive in the source must
be implemented without using any finite resource, additional work must be done
(see Chapter 9).

3.7 Pascal examples
To start off, I will translate a small Pascal program into the intermediate language.

PROGRAM Small;

VAR x : integer;

BEGIN

Read(x);

x := x + 1;

Write(x);

END.

First, a location is needed to hold the value of x. Pascal was designed in such
a way that locations do not escape upwards and can be allocated on a stack. This

28 CHAPTER 3. FRONT ENDS

allows $push to be used to allocate the location for x.
((lambda (x:ptr)

(block ...))

($push () ’16))

$push is passed the number of bits that the location needs to contain and
returns the location, which is a pointer. Pascal integers are assumed here to be
sixteen bits long. Note that x is of size ptr and not size 16 as x represents the
location of the value and not the value itself.

Assuming that the primitive $read reads and returns a sixteen bit integer the
first statement can be translated as follows:

Read(x); =⇒ ($set-contents () x ’16 ’0 ($read ()))

The arguments to $SET-CONTENTS are a location, a size in bits, an offset, and
a value. The value, which should be of the specified size, is stored in the location
starting at the offset. The next statement dereferences x, adds one to the value,
and stores it back into the location for x:

x := x + 1; =⇒ ($set-contents () x ’16 ’0

($add16 () ($contents () x ’16 ’0) ’1))

$contents takes the same size and offset information as $set-contents.
$add16 is a primitive that adds two sixteen bit numbers and returns the result.
The last statement writes out the value of x using a primitive $write:

Write(x); =⇒ ($write () ($contents () x))))

Putting it all together gives:
((lambda (x:ptr)

(block ($set-contents () x ’16 ’0 ($read ()))

($set-contents () x ’16 ’0

($add16 () ($contents () x ’16 ’0) ’1))

($write () ($contents () x))))

($push () ’16))

The Pascal read procedure actually has an implicit file variable for the stan-
dard input. The $read primitive needs the actual value of standard input, which
is not defined in the file and so must be obtained from the global environment.
In the final version of the program $read and $write are passed the appropriate
input and output streams obtained from the global environment indexed by the
constants std-in and std-out.

3.7. PASCAL EXAMPLES 29

(lambda (globals:ptr)

((lambda (x:ptr)

(block ($set-contents () x ’16 ’0

($read () ($contents () globals ’ptr ’std-in)))

($set-contents () x ’16 ’0

($add16 () ($contents () x ’16 ’0) ’1))

($write () ($contents () x)

($contents () globals ’ptr ’std-out))))

($push () ’16)))

3.7.1 Data structures
Compound data structures can be implemented using the primitives already in-
troduced. Records and arrays are created using $push or $allocate, set using
$set-contents and accessed using $contents.

a : array [1..10] of integer;

=⇒
($push () ’160)

Accessing a field of a record is simply a matter of specifying the appropriate
offset. Accessing an array requires adjusting the index by the array’s lower bound
(one in this case) and converting to bytes for $contents and $set-contents.

a[i] := 50

=⇒
($set-contents () a ’16

($multiply16 () ’2

($add16 () ’-1

($contents () i ’16 ’0)))

’50)

3.7.2 Compound statements
IF can be implemented using a primitive $if that has one argument and two con-
tinuations. The first continuation is called if the argument is true and the second
if it is false.

30 CHAPTER 3. FRONT ENDS

IF exp THEN statement1 ELSE statement2;

=⇒
($if ((lambda () statement1) (lambda () statement2)) exp)

with statement1 and statement2 translated and exp translated and derefer-
enced.

Loops are implemented using recursive procedures. Calling the procedure and
returning from it require special primitives as described above. $simple-call

and $simple-return are primitives for calling and returning from procedures
that take no arguments and return no values.
WHILE exp DO statement;

=⇒
((lambda (proc:ptr)

(block ($set-contents () proc ’ptr ’0

(lambda ()

($if ((lambda ()

(block statement

($simple-call ()

($contents () proc ’ptr ’0))

(return $simple-return)))

(lambda () (return $simple-return)))

exp)))

($call () ($contents () proc ’ptr ’0))))

($push () ’ptr))

3.7.3 Procedures and functions
Pascal procedure and function calls are handled by primitives that package up the
arguments to be passed as a single value. Within the procedure another primitive
breaks the argument up into the original values. In Pascal arguments may be
passed either by value or by reference. A simple implementation method is to
pass all arguments by reference and have the called procedure copy the values
that should have been passed by value. A primitive $copy can be used to copy
data from one location to another.

3.7. PASCAL EXAMPLES 31

PROCEDURE Frog (x : integer; VAR y : integer); ...

=⇒
(lambda (all:state)

($unpack-call ((lambda (x:ptr y:ptr)

((lambda (x1:ptr)

(block

($copy () x x1 ’16)

...))

($push () ’16))))

’<ptr ptr>

all))

<ptr ptr> is a constant specifying the particular argument passing protocol
to be used. In this case two pointer values are being passed as arguments. Giving
the parameter types as an argument to the primitive call allows the front-end to
use only one procedure-call primitive for many different procedures. The prim-
itive uses the type argument to determine exactly how the parameters are to be
passed to the procedure. For example, x and y may be passed in two specific reg-
isters, or in the first two stack locations, or whatever. The procedure returns using
$simple-return as Pascal procedures return no values. If Frog were a Pascal
function returning an integer it could use

($return-with-values () ’<16> z:16)

to return one sixteen bit result. Calling the function and getting the return value is
done as follows:

($call-with-values-and-return () proc:ptr

’<<ptr ptr> <16>>

a:ptr

b:ptr)

where $call-with-values-return handles both calling the procedure and get-
ting the returned value. <<ptr ptr> <16>> is a constant containing both the
types of arguments passed and the values returned.

The scoping of identifiers for variables, procedures, and functions within the
code for a Pascal block follows their scoping in the language definition. Proce-
dures and functions in Pascal may be recursive, so locations are introduced for
all procedures and functions before any of the values themselves appear in the
program. The translation of a block would look something like this:

32 CHAPTER 3. FRONT ENDS

((lambda (var1 var2 ...)

((lambda (proc1 proc2 ...)

(block ($set-contents () proc1 ’ptr ’0

first-procedure)

($set-contents () proc2 ’ptr ’0

second-procedure)

...

{the body of the program}
))

($push () ’ptr) ($push () ’ptr) ...))

($push () size1) ($push () size2) ...)

3.8 Factorial in Pascal
Here is a simple Pascal program that will be used to demonstrate the entire process
of compilation. It reads in a positive integer x and prints out x! = 1 ∗ 2 ∗ . . . ∗ x.

PROGRAM Fact;

VAR x, r : integer;

PROCEDURE Fact(n : integer; VAR res : integer);

VAR i, r : integer;

BEGIN

r := 1;

FOR i := 1 TO n DO

r := r * i;

res := r

END;

BEGIN

Readln(x);

Fact(x, r);

Writeln(r)

END.

This becomes a very large program in the intermediate language, shown here
in three parts. The first is the body of the program which introduces locations for
the variables x and y and the procedure Fact, reads a value for x, calls Fact, and
writes out the value of r.

The second part is the procedure Fact (which is represented in the first part by

3.8. FACTORIAL IN PASCAL 33

<FACT>). It gets the values of its arguments, copies the value of n, which is passed
by value, makes locations for r and i, sets up and calls a recursive procedure for
the FOR loop, sets the value of r, and returns. Note that some new identifiers have
been introduced so that each identifier is bound only once.

The recursive procedure is shown in the third part. It compares i and n1, and if
they are equal the procedure returns, otherwise i and r are set to their new values
and the procedure calls itself.

For clarity, the size and offset arguments to $contents and $set-contents

are not shown here.
(lambda (global:ptr)

((lambda (x:ptr r:ptr)

((lambda (fact:ptr)

(block

($set-contents () fact <FACT>)

($set-contents () x ($read () ($contents () global ’<si>)))

($read-line () ($contents () global ’<si>))

($proc-call () ($contents () fact) x r ’<ptr ptr>)

($write () ($contents () r) ($contents () global ’<so>))

($write-line () ($contents () global ’<so>))

(return $simple-return)))

($push () ’ptr)))

($push () ’16)

($push () ’16)))

34 CHAPTER 3. FRONT ENDS

<FACT> =

(lambda (args:all)

($get-args

((lambda (n:ptr res:ptr)

((lambda (n1:ptr)

(block

($copy () n n1 ’16)

((lambda (i:ptr r1:ptr)

(block

($set-contents () r1 ’1)

((lambda (loop:ptr)

(block ($set-contents () loop <LOOP>)

($set-contents () i ’1)

($simple-call () ($contents () loop))))

($push () ’ptr))

($set-contents () res ($contents () r1))

(return $simple-return)))

($push () ’16)

($push () ’16))))

($push () ’16))))

’<ptr ptr>

args))

<LOOP> =

(lambda ()

($equal16 ((lambda ()

(return $simple-return))

(lambda ()

(block

($set-contents () r1

($multiply16 () ($contents () r1)

($contents () i)))

($set-contents () i

($add16 () ($contents () i) ’1))

($simple-call () ($contents () loop))

(return $simple-return))))

($contents () i)

($contents () n1)))

Chapter 4

Ordering Calls

4.1 Making code linear
The first step of the actual compilation is to give an explicit order to the applica-
tions in the program. At the same time identifiers are introduced for all temporary
values and all block expressions are removed. A global transformation does all
of this, producing a transformed program in which the arguments to applications
are, with one exception, never applications themselves, but either constants, iden-
tifiers, or lambda expressions. The one exception is calls of the form ((lambda

(x) ...) A); calls to lambda expressions with only one argument may have
an application as the argument.

As an example of the transformation to linear code, in the expression ($call

() f ($call g x)) the result of the call to g is an anonymous temporary value.
The transformation converts this expression into ((lambda (v) ($call () f

v)) ($call g x)) where v is the identifier introduced for the result of the call
to g. If more than one temporary is needed they are bound by separate lambda

expressions. This has the effect of specifying the order in which the calls that
produce the temporary values are executed.

($call () f ($call () g x) ($call () h y))

=⇒
((lambda (v1)

((lambda (v2) ($call () f v1 v2))

($call () h y)))

($call () g x))

Here the call to g is done before the call to f.

35

36 CHAPTER 4. ORDERING CALLS

Block expressions are removed by introducing temporary identifiers to hold
the values returned by the non-final expressions in the block. These introduced
identifiers are not referenced and so the values that the intermediate expressions
return are ignored.

(block ($call () f) ($call () g))

=⇒
((lambda (v1) ($call () g)) ($call () f))

The lambda expressions the transformation introduces correspond exactly to
the expression continuations used by the semantic function Ei* and by Ei for
block expressions. In interpreting the linear code these expression continuations
are used only ephemerally (or not at all) as block no longer appears in the pro-
gram and arguments to applications can be evaluated trivially, as in the machine
language.

4.2 The transformation
lin : Exp→ Exp

lin [[K]] = [[K]]

lin [[I]] = [[I]]

Constants and identifiers remain unchanged.

lin [[(lambda (I*) E)]] = [[(lambda (I*) E′)]]
where: E′ = lin([[E]])

lambda expressions have their bodies transformed.

lin [[(P (C0 ...Cn) E0 ...Em)]] =
[[((lambda (x0)

((lambda (x1)

. . .
((lambda (xm)

(P (C′
0 ...C′

n) y0 ...ym))

E′
m)

. . .)
E′
1)

4.2. THE TRANSFORMATION 37

E′
0)]]

where: 〈E′
0 . . . E′

m〉 = permute(lin(E0) . . . lin(Em))
C′

i = lin(Ci)
xi is a new identifier with size size(E′

i)
〈y0 . . .ym〉 = unpermute(x0 . . .xm)

New lambda expressions are introduced to bind the arguments to applications.
The arguments are evaluated in the order specified by the procedure permute from
the semantics. size, which is defined below, determines the size of the value re-
turned by an expression. The current implementation of the compiler does not
introduce lambda expressions to bind the values of arguments that are not appli-
cations as the new expressions would be immediately removed again during the
code improvement phase.

(return P E*) and ((lambda (...) E) ...) are transformed in exactly
the same fashion as calls to primitives. The procedure in ((lambda (...) E)

...) is transformed but no additional binding is introduced for it.

lin [[(block E)]]= lin([[E]])

A block with one expression is the same as the expression.

lin [[(block E E+)]] = ((lambda (x) E′′) E′)

where: [[E′]] = lin([[E]])
[[E′′]] = lin([[(block E+)]])
x is a new identifier with size size(E′)

A lambda expression is introduced to bind the value of the first expression in
the block to an identifier that is afterwards ignored.

The function size is used above to determine the size of value returned by
expressions. size is defined as follows:

size [[I]]= identifiersize([[I]])
size [[K]]= constantsize([[K]])
size [[(lambda ...)]]= ptr

size [[(block E* E)]]= size([[E]])
size [[(P (...) E*)]]= primitivevaluesize([[P]], [[E*]])
size [[((lambda (...) E) ...)]]= size([[E]])

38 CHAPTER 4. ORDERING CALLS

identifiersize and constantsize return the sizes of identifiers and constants.
lambda expressions are all pointers. primitivevaluesize returns the size of the
value returned by a call to a particular primitive. It is passed the arguments to the
call for the benefit of primitives such as $contents that return different sizes of
values depending on their arguments.

size should never find a return statement as it is originally called only on
expressions that are arguments to calls or non-final expressions in blocks, which
thus cannot end with a return from a procedure.

4.3 Factorial example
Here is result of calling lin on the Fact example of the previous chapter.

The LET* syntax used here differs slightly from Scheme’s to allow for calls
to return more than one value. This will be needed at the end of the next section.
Each clause has a list of identifiers and a list of expressions instead of only one
of each. In the linear code if there is more than one expression in a clause, none
of the expressions may be calls. If there is only one expression and it is a call
then the identifiers are bound to the values returned by the call. Otherwise, each
identifier is bound to the value of the corresponding expression.

The names of the introduced identifiers correspond to the size of the value they
will be bound to at run-time: p for ptr, t for 16, and x for 0.

4.3. FACTORIAL EXAMPLE 39

(lambda (global)

(let* (((p.0) ($push () ’16))

((p.1) ($push () ’16))

((x r) p.0 p.1)

((p.2) ($push () ’ptr))

((fact) p.2)

((x.3) ($set-contents () fact <FACT>))

((x.4) (let* (((t.14)

(let* (((t.15) ($contents () global ’(si))))

($read () t.15))))

($set-contents () x t.14)))

((x.5) (let* (((p.13) ($contents () global ’(si))))

($read-line () p.13)))

((x.6) (let* (((p.12) ($contents () fact)))

($proc-call () p.12 x r ’(ptr ptr))))

((x.7) (let* (((t.10) ($contents () r))

((p.11) ($contents () global ’(so))))

($write () t.10 p.11)))

((x.8) (let* (((t.9) ($contents () global ’(so))))

($write-line () t.9))))

(return $simple-return)))

<FACT> =

(lambda (args)

($get-args (<FACT-BODY>) ’(ptr ptr) args))

40 CHAPTER 4. ORDERING CALLS

<FACT-BODY>=

(lambda (n res)

(let* (((p.16) ($push () ’16))

((n1) p.16)

((x.17) ($copy () n n1 ’16))

((p.18) ($push () ’16))

((p.19) ($push () ’16))

((i r1) p.18 p.19)

((x.20) ($set-contents () r1 ’1))

((x.21) (let* (((p.24) ($push () ’ptr))

((loop) p.24)

((x.25) ($set-contents () loop <LOOP>))

((x.26) ($set-contents () i ’1))

((p.27) ($contents () loop)))

($simple-call () p.27)))

((x.22) (let* (((t.23) ($contents () r1)))

($set-contents () res t.23))))

(return $simple-return)))

<LOOP> =

(lambda ()

(let* (((t.28) ($contents () i))

((t.29) ($contents () n1)))

($equal16 (<TRUE> <FALSE>) t.28 t.29)))

<TRUE> =

(lambda ()

(return $simple-return))

<FALSE> =

(lambda ()

(let* (((x.30) (let* (((t.36) (let* (((t.37) ($contents () r1))

((t.38) ($contents () i)))

($multiply16 () t.37 t.38))))

($set-contents () r1 t.36)))

((x.31) (let* (((t.34) (let* (((t.35) ($contents () i)))

($add16 () t.35 ’1))))

($set-contents () i t.34)))

((x.32) (let* (((p.33) ($contents () loop)))

($simple-call () p.33))))

(return $simple-return)))

Chapter 5

Continuation Passing Style

5.1 Converting code into CPS
The transformation to linear code moved many of the continuations of the seman-
tics into the program but did not make them actual continuations. As an example,
given the source expression ($p1 () ($p2 () x y) z) (and considering only
the application of $p2) the linear code is:

((lambda (t) ($p1 () t z)) ($p2 () x y))

The transformation to CPS moves the lambda expression inside the applica-
tion as a continuation and replaces $p2 with a similar primitive that calls the new
continuation; the result is:

($p2’ ((lambda (t) ($p1 () t z))) x y)

At the same time identifiers are introduced for the currently anonymous con-
tinuations passed to lambda expressions. This allows the return expressions to
be replaced with calls to the new continuation identifiers.

In the linear program every primitive application either has one or more con-
tinuation arguments or there is a corresponding lambda expression that binds the
result of the application. This is because the transformation to linear code in-
troduced identifiers for the values of all arguments to applications and non-final
expressions in blocks, which is in fact all primitive applications, as in the source
program only return expressions may return values from lambda expressions.
To convert the program into continuation passing style the lambda expression that
binds the result of an application is made a continuation argument to the applica-
tion. The primitive procedure being called is replaced with one that is identical
except that it calls its continuation argument rather than returning a value.

41

42 CHAPTER 5. CONTINUATION PASSING STYLE

lambda expressions that are continuation arguments or procedures in appli-
cations are changed to cont expressions with the same identifiers and body. All
other lambda expressions are changed to proc expressions with an additional
identifier added for the continuations. return expressions are replaced with ap-
plications that call the continuation identifier of the enclosing proc expression.
Primitive procedures used to perform procedure calls are replaced with versions
that pass a continuation to the procedure being called instead of having it return a
value.

The result of the transformation is a program that is in continuation passing
style: expressions no longer return values and every application finishes by call-
ing a continuation. All of the expression continuations of the semantics have been
translated into the program. The expression continuations are no longer needed in
that the program could be interpreted as being in a language which had the envi-
ronments of the intermediate language but not its continuations. As the transfor-
mation into CPS has not changed the meaning of the program in the intermediate
language there is no need to actually define this third language.

5.2 The transformation
Conversion to continuation passing style is a global transformation. Unlike lin
it is correct only as a global transformation in that the entire program must be
transformed at the same time. In addition to an expression, the transformation re-
quires a continuation, which is either an identifier bound to a cont expression or a
cont expression itself, and a boolean value that specifies whether the continuation
is a known cont expression. Continuation identifiers of proc expressions are un-
known continuations, as there is no way in general to identify the continuation that
they will represent at run-time, and thus they can only be called using a primitive
supplied by a return expression. All other continuations are considered known.
For any known continuation it is easy to identify the applications that may call it
and to determine that only that continuation will be called at those applications.
These applications use the $return primitive mentioned in Section 3.5 to call the
continuation.

The transformation uses two auxiliary functions, value to convert expressions
that are known not to be applications and convert-cont to convert continuation
arguments.

5.2. THE TRANSFORMATION 43

convert : Exp→ Exp→ {true, false} → Exp
value : Exp→ Exp

convert-cont : Exp→ Exp→ {true, false} → Exp

value [[K]]= [[K]]

value [[I]]= [[I]]

Constants and identifiers are unchanged.

value [[(lambda (I*) E)]] = [[(proc c (I*) E′)]]
where: c is a new identifier with size ptr

E′ = convert([[E]], [[c]], false)

lambda expressions are converted to proc expressions with the body con-
verted using the new identifier as the continuation. The continuation is unknown
as it is not bound to a particular cont expression.

convert-cont [[(lambda (I*) E)]] [[Ec]] known? =
[[(cont (I*) E′)]]
where: E′ = convert([[E]], [[Ec]], known?)

convert-cont propagates the continuation down into the body of the lambda

expression. It is only used on continuation arguments to primitive applications
and these are always lambda expressions.

convert [[K]] [[Ec]] true =
[[($return () Ec E′)]]
where: E′ = value([[K]])

Constants are passed to the continuation using the primitive $return. The
continuation must be known. This transformation is also used for identifiers and
lambda expressions.

convert [[((lambda (I) E) A)]] [[Ec]] known? =
convert([[A]], [[(cont (I) E′)]], true)
where: E′ = convert([[E]], [[Ec]], known?)

44 CHAPTER 5. CONTINUATION PASSING STYLE

For an application that binds the result of a call (the one place that applica-
tions may be arguments in the linear code) the lambda expression is changed to
a cont and is used as the continuation to the argument. The continuation itself is
propagated in to the body of the procedure (now a continuation).

convert [[((lambda (I*) E) E0 ...En)]] [[Ec]] known? =
[[((cont (I*) E′) E′

0 ...E′
n)]]

where: E′ = convert([[E]], [[Ec]], known?)
E′
i = value([[Ei]])

In all other applications of lambda expressions the procedure is again changed
into a cont expression with the continuation propagated into the body, but here it
is left as the procedure being called. value is called on all of the arguments; in the
linear code none of these can be applications.

convert [[(return P E0 ...En)]] [[Ec]] known? =
[[(P () Ec E′

0 ...E′
n)]]

where: E′
i = value(Ei)

return expressions are the only place calls are made to unknown continua-
tions. The primitive becomes the procedure and the continuation is added as a
value argument, not as a continuation argument.

convert [[(P () E0 ...En)]] [[(cont ...)]] true =
[[(P′ ((cont ...)) E′

0 ...E′
n)]]

where: P′ = convertprimitive([[P]])
E′
i = value([[Ei]])

convert [[(P () E0 ...En)]] [[I]] true =
[[(P′ ((cont (x) ($return () I x))) E′

0 ...E′
n)]]

where: P′ = convertprimitive([[P]])
x is a new identifier with size primitivevaluesize([[P]], [[E0]], . . . , [[En]])
E′
i = value([[Ei]])

If a primitive application has no continuation arguments the continuation is
added as one. If the continuation is an identifier, a cont form must be wrapped
around it as continuation arguments cannot be identifiers. The primitive itself
must be modified as it now calls a continuation argument instead of returning a
value. Actually, the first case above is unnecessary as the second is always correct.
The first is included only to improve the speed of compilation and has no effect
on the output of the compiler.

5.3. NOTATION AND BASIC BLOCKS 45

convert [[(P (C0 ...Cn) E0 ...Em)]][[Ec]] known? =
[[(P (C′

0 ...C′
n) E′

0 ...E′
n)]]

if n = 1 or cont is an identifier, otherwise
[[((cont (j) (P (C′′

0 ...C′′
n) E′

0 ...E′
n)) Ec)]]

where: j is a new identifier of size ptr
C′

i = convert-cont([[Ci]], [[Ec]], known?)
C′′

i = convert-cont([[Ci]], [[j]], known?)
E′
i = value([[Ei]])

The final case is that of a primitive application with one or more continua-
tion arguments. If there is only one, and thus the continuation will not need to
be copied, or the continuation is an identifier, in which case the copying will not
increase the size of the program, the continuation is propagated into the contin-
uation arguments. Otherwise the continuation is bound to a new identifier and
the new identifier is propagated into the continuation arguments. Again, the sec-
ond transformation is correct in all cases and the first is used only for compiler
efficiency.

5.3 Notation and basic blocks
While CPS code is easy for programs to analyze it is very hard to read. A little
syntactic sugaring makes the code much more comprehensible. The syntax that is
used here is another variation on Scheme’s let* syntax. It looks much like that
used for the linear code, but the syntax has a somewhat different interpretation.
The identifiers are not bound by lambda expressions that are called on values,
instead they are bound by cont expressions that are continuation arguments to
the application. Calls to cont expressions are written exactly as calls to lambda

expressions were before.
Let* as used in the linear examples:
(let* ((v) ($p () x y)) ...)

⇐⇒
((lambda (v) ...) ($p () x y))

Let* as used in the CPS examples:
(let* ((v) ($p x y)) ...)

⇐⇒
($p ((lambda (v) ...)) x y)

46 CHAPTER 5. CONTINUATION PASSING STYLE

The meaning of the binding clauses in the let* is as follows:
(vars ($p arg ...)) {rest}
⇐⇒

($p ((lambda vars {rest})) arg ...)

((v1 v2 ...) x1 x2 ...) {rest}
⇐⇒

((cont (v1 v2 ...) {rest}) x1 x2 ...)

Unreferenced identifiers with a size of zero will not be shown.
The let* ends whenever a call to a primitive does not have exactly one con-

tinuation. Thus each let* consists of a sequence of calls through which there is
only one possible execution path. In other words, each let* is a basic block of
the program.

The abstraction that begins a basic block may be a proc expression, in which
case it is called a ‘procedure’, or a cont expression that is either a continuation
argument to a call that has more than one continuation, called a ‘split’, or a cont

expression that is a non-continuation argument, called a ‘join’. Every expres-
sion is contained in one procedure that is lexically inferior to all other procedures
containing the expression. This procedure is called the expression’s ‘enclosing
procedure’.

Some of the compiler’s algorithms operate on the basic blocks and the call
graph of the program directly. Each basic block has the following attributes that
are determined and used by the compiler:

start - the starting lambda expression
end - the final call
known? - are all of the calling points known
join? - is the start of this block a join
split? - is the start of this block a split
procedure? - is the start of this block a procedure
lexical-parent - the lexically superior block
lexical-children - the immediate lexical inferiors of this block
parents - the blocks known to precede this one in the call graph
children - the blocks known to follow this one in the call graph

5.4. RESTRICTIONS 47

5.4 Restrictions
After conversion to CPS there are two properties of the use of continuations and
joins in the code that the rest of the compiler must preserve. Continuation iden-
tifiers and the continuations bound to them are used in a first-in-first-out fashion.
This is equivalent to ensuring that the proc expression binding the continuation
identifier is the enclosing procedure of all references to the identifier. The second
property is that the enclosing procedure of all calls to joins must be the enclosing
procedure of the join itself. These properties will allow the compiler to allocate
and deallocate environments for continuations and joins on a stack.

5.5 Factorial example
The program has now been transformed into CPS. There are five basic blocks: the
main program, the Fact procedure, and three blocks that make up the recursive
procedure from the FOR loop.
(proc p.39 (global)

(let* (((p.0) ($push ’16))

((p.1) ($push ’16))

((x r) p.0 p.1)

((p.2) ($push ’ptr))

((fact) p.2)

(() ($set-contents fact <FACT>))

((p.15) ($contents global ’(si)))

((t.14) ($read p.15))

(() ($set-contents x t.14))

((p.13) ($contents global ’(si)))

(() ($read-line p.13))

((p.12) ($contents fact))

(() ($proc-call p.12 x r ’(ptr ptr)))

((t.10) ($contents r))

((p.11) ($contents global ’(so)))

(() ($write t.10 p.11))

((p.9) ($contents global ’(so)))

(() ($write-line p.9)))

($simple-return () p.39)))

48 CHAPTER 5. CONTINUATION PASSING STYLE

<FACT> =

(proc p.40 (args)

(let* (((n res) ($get-args ’(ptr ptr) args))

((p.16) ($push ’16))

((n1) p.16)

(() ($copy n n1 ’16))

((p.18) ($push ’16))

((p.19) ($push ’16))

((i r1) p.18 p.19)

(() ($set-contents r1 ’1))

((p.24) ($push ’ptr))

((loop) p.24)

(() ($set-contents loop <LOOP>))

(() ($set-contents i ’1))

((p.27) ($contents loop))

(() ($simple-call p.27))

((t.23) ($contents r1))

(() ($set-contents res t.23)))

($simple-return () p.40)))

<LOOP> =

(proc p.41 ()

(let* (((t.28) ($contents i))

((t.29) ($contents n1)))

($equal16 (<TRUE> <FALSE>) t.28 t.29)))

<TRUE> =

(cont ()

($simple-return () p.41))

5.5. FACTORIAL EXAMPLE 49

<FALSE> =

(cont ()

(let* (((t.37) ($contents r1))

((t.38) ($contents i))

((t.36) ($multiply16 t.37 t.38))

(() ($set-contents r1 t.36))

((t.35) ($contents i))

((t.34) ($add16 t.35 ’1))

(() ($set-contents i t.34))

((p.33) ($contents loop))

(() ($simple-call p.33)))

($simple-return () p.41)))

50 CHAPTER 5. CONTINUATION PASSING STYLE

Chapter 6

Code Improvements

6.1 Local code transformations
After CPS conversion the compiler uses a variety of local code transformations
and two global transformations, one of which is based on flow analysis, in order
to improve efficiency of the code. The compiler applies the local transformations
both before and after the global transformations. Doing them beforehand makes
the global transformations more effective by simplifying the code and doing them
afterwards allows them to take advantage of the changes made by the global trans-
formations. The compiler continues to apply local transformations until none are
applicable to any point in the code.

Since there is no specified order in which the local transformations are ap-
plied the question of termination arises. There are two ways in which the code
improvement transformations might fail to terminate: either the transformed pro-
gram grows without bound or the transformations loop, with some undoing the
work of others. The only place where code (other than identifiers and constants)
is duplicated is in the beta-substitution of abstractions. The compiler only dupli-
cates abstractions below a certain size and if the program grows too large (relative
to the size of the original program) duplication stops for the rest of the compila-
tion. It is important to verify that none of the transformations undo the work of
others so that the improvement process will eventually terminate.

Many of the local transformations used are well known [Steele 78, Brooks 82,
Kranz 86, Standish 76]. For clarity most of the transformations are shown in non-
CPS code. It is important to remember that in CPS code the arguments to calls
cannot be calls and so can be evaluated without consulting or modifying the store.

51

52 CHAPTER 6. CODE IMPROVEMENTS

Each separate transformation is meant to be as simple as possible. The effi-
ciency of the final code comes from the interaction of the various transformations.
Many of the transformations shown here could be improved and many more could
be added.

6.1.1 Beta substitution
The simplest code improvement done is beta substitution; that is, substituting
values for identifiers. [value/identifier]expression is defined to be expression
with value substituted everywhere for identifier. Since identifiers must be unique
shadowing is not a problem.

((cont (x) body) value)
=⇒

((cont () [value/ value] body))

After CPS conversion value can only be a constant, an identifier, or an abstrac-
tion and can be substituted in body without worrying about side-effects. The only
case in which the value is not substituted is when x is referenced more than once
and value is too large an expression to be duplicated cheaply. The current defi-
nition is of ‘too large’ is weighted towards keeping the program small. Copying
larger values might speed up the compiled programs; I have not made any mea-
surements on how the maximum size of duplicated expressions affects the final
program’s size and speed.

A call to a cont expression with no arguments is replaced with the body of
the expression.

((cont () body))

=⇒
body

If a primitive does not use the store and its continuation does not use any
values that the primitive returns, the call to the primitive is replaced with the body
of the continuation.

(primitive ((cont (x) body-not-referencing-x)) arguments)

=⇒
body-not-referencing-x

6.1. LOCAL CODE TRANSFORMATIONS 53

6.1.2 Operation specific transformations
Some primitives have associated code improvement transformations. Examples
of this are constant folding and reduction in strength. Different languages re-
quire different primitive operations and thus may have different operation specific
transformations.

The current implementation performs constant folding for arithmetic primi-
tives and conditional expressions. The following examples show the method of
substituting a value for the result of a primitive call.

($add ((cont (x) body)) ’2 ’3)

=⇒
((cont (x) body) ’5)

($if ((cont () true-body) (cont () false-body)) ’false)

=⇒
((cont () false-body))

Reduction in strength means replacing an expensive instruction with a cheaper
one. The one example of this that the compiler does is replacing multiplication by
integer constants with sequences of shifts and adds. On the Motorola 68020 multi-
plication is a slow instruction and the corresponding shifts and adds are noticeably
faster.

As an example of a transformation that is both language and machine specific
the $copy primitive used in the factorial example is implemented in one of three
different ways depending on the size of the location being copied. If the location
is not larger than one machine word the call to $copy is replaced with calls to
$contents and $set-contents. If the location is larger than one machine word
the $copy primitive is replaced with one of two different primitives, one of which
generates a sequence of move instructions, the other generates a simple loop. The
size at which the loop version is specified by the front-end and depends on the
relative importance of program size and speed, and the size and speed of move
instructions on the target machine.

($copy () n n1 ’16)

=⇒
(let* ((x) ($contents n ’16))

($set-contents n1 ’16 x))

54 CHAPTER 6. CODE IMPROVEMENTS

6.1.3 Simplifying procedure calls
Certain primitives call one of their values. If the value that is being called can
be identified then the calls may be simplified. If all calls to a particular abstrac-
tion expression are known, all use the same primitive, and only that expression is
called at those calls, then a transformation specific to the calling primitive is ap-
plied. This usually results in replacing the primitive with one of the standard call
primitives, $call or $return, along with removing any argument destructuring
from the body of the abstraction. If the procedure returns values a primitive call
may need to be introduced to destructure the return values.

(let* (((p) (proc c:ptr (all:state))

($unpack-call ((cont (x:ptr y:ptr) ...))

’<ptr ptr>

all))

((z:16) ($func-call p a b)))

...)

=⇒
(let* (((p) (proc c:ptr (x:ptr y:ptr) ...))

((ret:all) ($call p a b))

((z:16) ($unpack-return ret ’<16>)))

...)

In this example the primitive $func-call packages up the call arguments,
calls the procedure, and unpacks the return value. Once the procedure has been
identified the arguments no longer need to be packaged and unpackaged and the
compiler does not need to use any particular calling convention when calling the
identified procedure. The packaging of return values can be removed if the con-
tinuation passed to the procedure can be identified in the same manner.

Some languages require a slightly different process. In Scheme some argu-
ments may need to be consed into a list. In the example below, f has two formal
parameters: x, which is bound to the first argument, and y, which is bound to a
list of all the remaining arguments. The call to f passes it three arguments. In the
transformation a new primitive, $list, is used to make a list of the last two actual
arguments. $call can only be used when there is a one-to-one correspondence
between the expected and actual arguments.

6.1. LOCAL CODE TRANSFORMATIONS 55

(let ((f (lambda (x . y) ...)))

(f a b c)

...)

=⇒ {Translation and CPS conversion}
(let* (((f) (proc c:ptr (all:state))

($unpack-call ((cont (x:ptr y:ptr) ...))

’<ptr rest-list>

all))

((z:ptr) ($func-call f a b c)))

...)

=⇒
(let* (((f) (proc c:ptr (x:ptr y:ptr) ...))

((temp:ptr) ($list b c))

((ret:all) ($call f a temp))

((z:ptr) ($unpack-return ret ’<ptr>)))

...)

There is also a transformation associated with the three standard calling primi-
tives $call, $return, and $jump. If the expression being called is an abstraction
the call is changed to call the expression directly. In the case of $call the contin-
uation identifier of the proc expression is added to the list of other identifiers and
the proc is changed to a cont.

($call ((cont (...) ...)) (proc c (x y z) ...) a b c)

=⇒
((cont (c x y z) ...) (cont (...) ...) a b c)

6.1.4 Evaluation for control
Two local transformations implement evaluation for control (boolean short circuit-
ing). The first involves testing the result of a conditional expression, the second
is the propagation of conditional results. These are shown in non-CPS code for
clarity.

(if (if a b c) d e)

=⇒
(if a (if b d e) (if c d e))

56 CHAPTER 6. CODE IMPROVEMENTS

(if a (if a b c) d)

=⇒
(if a b d)

A third transformation that moves conditionals down into blocks increases the
applicability of the nested conditionals transformation.

(if (block <1> (if a b c)) d e)

=⇒
(block <1> (if (if a b c) d e))

The following (Scheme) example shows how these transformations implement
evaluation for control. In the example boolean negation is defined to be the proce-
dure NOT. This definition is substituted into a piece of code which is then reduced
to a single conditional by the transformations described above. AND and OR can be
done similarly.

NOT = (lambda (x) (if x false true))

(if (not x) 0 1)

=⇒ (if (if x false true) 0 1)

=⇒ (if x (if false 0 1) (if true 0 1))

=⇒ (if x 1 0)

6.1.5 Local location removal
A variety of transformations may be applied to calls that allocate locations.

(let ((loc ($make-location ’size)))

...)

If loc is unused, the call to $make-location is removed from the code as it
is unnecessary.

If all uses of loc are known, that is loc only appears as an argument to
$contents and $set-contents with a single, constant offset, then several trans-
formations may be possible:

If loc only appears in calls to $set-contents then the contents of the loca-
tion are never accessed and all of the $set-contents calls are removed.

If loc only appears in calls to $contents then the contents of the location are
never set and some constant value, currently zero, is substituted for the values of
the $contents calls.

6.2. FLOW ANALYSIS 57

If there is exactly one call to $set-contents then the value being put in the
cell is substituted for all of the $contents calls which are in its scope. If the
value is an abstraction that is too large to duplicate, the call to $set-contents

is moved as far down in its containing basic block as possible without moving it
past any use of the location. This increases the possibility that other values may
be substituted into the body of the abstraction.

6.2 Flow analysis
This is a global transformation that substitutes known values for identifiers. The
algorithm uses the basic block structure of the program and the call graph.

6.2.1 The algorithm
1. Collect all basic blocks that have all of their calling points identified and are

not continuation arguments. These are all of the blocks called using $call,
$return, or $jump.

2. Collect all identifiers bound by the top abstractions of the selected blocks.
These are the known identifiers.

3. For every known identifier collect all possible arguments and divide the ar-
guments into known identifiers and other values. For every known identifier
determine the known identifiers to which it is passed as a value.

4. Calculate the transitive closure of the values received by the known identi-
fiers, each of which passes its values to all known identifiers which got it as
a value in step 3.

5. For every known identifier with a single possible unknown value, if that
value is lexically in scope wherever the identifier is referenced, introduce a
new cont expression binding the identifier to the value at the lowest com-
mon ancestor of all of the uses. Remove the identifier from its original cont
or proc expression and remove the corresponding argument at all calls to
the expression. If the value is an abstraction the transformation may be done
only if there are no other uses of the expression as duplication of abstrac-
tions may cause the program to grow overly large.

58 CHAPTER 6. CODE IMPROVEMENTS

6.2.2 An example
(let ((f (lambda (x) body)))

(let ((g (lambda (y) (f y)))

(h (lambda (z) (f z))))

((g a) (h a))))

Following the five steps listed above we get:

1. The calling points of procedures f, g, and h are known.

2. The known identifiers are x, y, and z.

3. The only possible value of y and z is the value a. x gets the known identifiers
y and z as values.

4. The transitive closure gives all three known identifiers just the value a.

5. The (unknown) identifier a may be substituted for all three identifiers.

(let ((f (lambda () ((lambda (x) body) a))))

(let ((g (lambda () ((lambda (y) (f)) a)))

(h (lambda () ((lambda (z) (f)) a))))

((g) (h))))

=⇒ {local transformations}
(let ((f (lambda () [a/x] body)))

(let ((g (lambda () (f)))

(h (lambda () (f))))

((g) (h))))

If the value to be substituted is a continuation, either a cont expression or
the continuation identifier of a proc expression, the algorithm must check that
the substitution of the value does not move a calling point of a continuation from
one procedure into another. This is to preserve the first-in-first-out usage of con-
tinuations. When substituting a value for the continuation identifier of a proc

expression the proc expression must be changed to a cont and the primitives
used to call the procedure must be changed from $call to $jump as the procedure
no longer takes a continuation argument.

To allow the substitution of loop continuations, continuations of the form
(cont ({identifiers}) ($return c {identifiers})) are considered to

6.3. REMOVING LOCATIONS 59

be the same as the identifier c. The cont expression is present only because con-
tinuation arguments to primitives cannot be identifiers. The continuations to sim-
ple iterative loops are always substituted, as $set-contents calls where the value
is an abstraction are moved as far down in the code as possible as explained in
Section 6.2 above. In the case of a simple iteration, this puts the $set-contents
just before the initial call to the recursive procedure, so that all identifiers in the
continuation to this call are in scope in the body of the recursive procedure and
thus the continuation may be substituted into the body. This situation arises in the
factorial example presented at the end of this chapter.

6.3 Removing locations
This global transformation attempts to reduce the use of the store and thus in-
crease the effectiveness of the other transformations by allowing them to manipu-
late values that would otherwise be hidden in the store. The contents of particular
locations in the store are passed explicitly from procedure to procedure instead of
implicitly in the store. Only some uses of some locations may be removed in this
fashion.

The transformation will be presented here in terms of a single location. The
compiler actually does all locations in a single pass over the code. For the pur-
poses of this transformation a location is identified with the identifier to which
it is originally bound. Due to the wonders of CPS there will always be such an
identifier.

The transformation is applied globally only if all references to the location are
either setting or retrieving the contents of the location, and always with the same
size of data and an offset of zero. This transformation can be used for locations
that do not fit the listed criterion, such as locations that are passed as an argument
to a procedure, if the transformation is begun only at the call that creates the
location and stops when it reaches any call to a procedure or continuation.

6.3.1 Examples
Here is an example of this transformation, applied to a location loc. The contents
and use of the location can be determined within the basic block and calls to
$set-contents and $contents are removed.

60 CHAPTER 6. CODE IMPROVEMENTS

(proc c ()

(let* (((w) ($contents loc))

((x) ($+ w ’3))

(() ($set-contents loc x))

((y) ($contents loc))

((z) ($/ y ’2))

(() ($set-contents loc z)))

($return c)))

=⇒
(proc c ()

(let* (((w) ($contents loc))

((x) ($+ w ’3))

((z) ($/ x ’2))

(() ($set-contents loc z)))

($return c)))

For a cont expression, where all of the calling points are known and within
a single procedure, the transformation is more effective as the contents of the
location are passed as an argument and not inside the location.

(cont ()

(let* (((w) ($contents loc))

((x) ($+ w ’3))

(() ($set-contents loc x))

((y) ($contents loc))

((z) ($/ y ’2))

(() ($set-contents loc z)))

($jump a)))

=⇒
(cont (w)

(let* (((x) ($+ w ’3))

((z) ($/ x ’2)))

($jump a z)))

6.3.2 The transformation
The information required for the transformation is the call graph of the program
and a list of the proc expressions that contain references to the location. Each
proc expression is transformed separately. For this transformation a proc expres-

6.3. REMOVING LOCATIONS 61

sion is considered to include all cont expressions that are lexically inferior to it
and not inferior to any lexically inferior proc expression. Remember that all calls
to each such cont expression will be within the same proc expression as the ex-
pression itself. Only proc expressions that contain references to the location are
transformed.

The transformation flow takes an application, two boolean flags, and an ex-
pression and returns the transformed application. The first flag, in, indicates
whether the value that should be in the location at the application is actually stored
in the location. The second flag, known?, indicates whether the expression argu-
ment is known to be the value that should be in the location. The expression is
always either an identifier or a constant.

In the presentation of the transformation loc is the identifier bound to the
location and size is the size of the value it contains.

The bodies of all proc expressions that reference the store are transformed
using flow with the value initially in the location and not known to the compiler.

(proc I (I*) A)

=⇒
(proc I (I*) flow(A, true, false, ′0))

Two utility transformations are used for cont expressions. The first is applied
to continuation arguments to primitive calls and cont expressions that are being
called directly. It just calls flow on the body of the expression.

flow-cont [[(cont (I*) A)]] in? known? [[Ev]] =
[[(cont (I*) A′)]]

where: A′ = flow(A, in?, known?, [[Ev]])

The second, flow-value, may be called on any type of expression but only
changes cont expressions. These get a new identifier for the contents of the loca-
tion which is in turn propagated into the body of the expression.

flow-value [[(cont (I*) A)]] =
[[(cont (I I*) A′)]]
where: A′ = flow([[A]],False,True, [[I]])

I is a new identifier with size size

Now for flow itself. The call that creates the location is not changed. At that
point, as the contents of the location has not yet been set, the current value can be
considered to be stored in the location as well as known. The transformation is
the same if the location is created with $allocate.

62 CHAPTER 6. CODE IMPROVEMENTS

flow [[($push (C) size)]] in? known? [[Ev]] =
[[($push (C′) size)]]
where: C′ = flow-cont([[C]],True,True, [[′0]])

Calls that set the contents of the location are removed. The current value is the
new value, which has not been stored in the location.

flow [[($set-contents ((cont (I) A)) loc size ’0 E)]] in? known? [[Ev]] =
flow([[A]],False,True, [[E]])

Calls that dereference the location just pass the known value, if any, to the
continuation. If there is not a known value, the call is not removed and the con-
tinuation’s identifier becomes the new value.

flow [[($contents ((cont (I) A)) loc size ’0)]] in? known? [[Ev]] =
[[((cont (I) A′) Ev)]]

where: A′ = flow([[A]], in?,True, [[Ev]])
if known?, otherwise
[[($contents ((cont (I) A′)) loc size ’0)]]

where: A′ = flow([[A]],True,True, [[I]])

When control is transferred to a known cont expression the current value is
passed along as an argument.

flow [[($jump () I E*)]] in? known? [[Ev]] =
[[($jump () I Ev E*)]]
if known?, otherwise
[[($contents ((cont (I′) ($jump () I I′ E*))) loc size ’0)]]

where: I′ is a new identifier with size size

Calls to cont expressions are not changed.

flow [[(C E0 ...Em)]] in? known? [[Ev]] =
[[(C′ E′

0 ...E′
m)]]

where: C′ = flow-cont([[C]], in?, known?, [[Ev]])
E′
i = flow-value([[Ei]])

6.3. REMOVING LOCATIONS 63

At all other calls, if the call is a return or might use the location the current
value must be stored in the location if it is not already there. A return is a call with
no continuations that does not call $jump. An expression might use the location if
either 1) it actually contains a reference the location; 2) it is a call to a known proc

expression that references the location; or 3) it is a call to an unknown procedure
and there is a procedure that might use the location and not all of whose calling
points are known to the compiler.

flow [[(P (C*) E*)]] in? known? [[Ev]] =
[[($set-contents ((cont (I) A′)) loc size ’0 [[Ev]])]]

where: A′ = flow-call([[(P (C*) E*)]],True,False, [[Ev]])
I is a new identifier with size zero

if not in? and loc is used in [[(P (C*) E*)]], otherwise
[[A′]]

where: A′ = flow-call([[(P (C*) E*)]], in?, known?, [[Ev]])

flow-call [[(P (C0 ...Cn) E0 ...Em)]] in? known? [[Ev]] =
[[(P (C′

0 ...C′
n) E′

0 ...E′
m)]]

where: C′
i = flow-cont([[Ci]], in?, known?, [[Ev]]),

E′
i = flow-value([[Ei]])

64 CHAPTER 6. CODE IMPROVEMENTS

6.4 Factorial example

6.4.1 Local transformations
The local transformations do some beta substitution, remove several locations that
are set only once, and substitute the value of the factorial procedure and its contin-
uation to their respective calling points. The calling points of the loop procedure
have been identified and $call and $return are now used to call and return from
that procedure.
(proc p.39 (global)

(let* (((p.15) ($contents global ’(si)))

((t.14) ($read p.15))

((p.13) ($contents global ’(si)))

(() ($read-line p.13))

((p.18) ($push ’16))

((p.19) ($push ’16))

(() ($set-contents p.19 ’1))

((p.24) ($push ’ptr))

(() ($set-contents p.24 <LOOP>))

(() ($set-contents p.18 ’1))

((p.27) ($contents p.24))

(() ($call p.27))

((t.23) ($contents p.19))

((p.11) ($contents global ’(so)))

(() ($write t.23 p.11))

((p.9) ($contents global ’(so)))

(() ($write-line p.9)))

($simple-return () p.39)))

<LOOP> =

(proc p.41 ()

(let* (((t.28) ($contents p.18)))

($equal16 (<TRUE> <FALSE>) t.28 t.14)))

<TRUE> =

(cont ()

($return () p.41))

6.4. FACTORIAL EXAMPLE 65

<FALSE> =

(cont ()

(let* (((t.37) ($contents p.19))

((t.38) ($contents p.18))

((t.36) ($multiply16 t.37 t.38))

(() ($set-contents p.19 t.36))

((t.35) ($contents p.18))

((t.34) ($add16 t.35 ’1))

(() ($set-contents p.18 t.34))

((t.33) ($contents p.24))

(() ($simple-call t.33)))

($return () p.41)))

66 CHAPTER 6. CODE IMPROVEMENTS

6.4.2 Flow analysis
The continuation of the loop is substituted for the identifier p.41. The two calls
to the loop now use $jump instead of $call and the loop is changed from a proc
to a cont.
(proc p.39 (global)

(let* (((p.15) ($contents global ’(si)))

((t.14) ($read p.15))

((p.13) ($contents global ’(si)))

(() ($read-line p.13))

((p.18) ($push ’16))

((p.19) ($push ’16))

(() ($set-contents p.19 ’1))

((p.24) ($push ’ptr))

(() ($set-contents p.24 <LOOP>))

(() ($set-contents p.18 ’1))

((p.27) ($contents p.24)))

($jump p.27)))

<LOOP> =

(cont ()

(let* (((t.28) ($contents p.18)))

($equal16 (<TRUE> <FALSE>) t.28 t.14)))

<TRUE> =

(cont ()

(let* (((t.23) ($contents p.19))

((p.11) ($contents global ’(so)))

(() ($write t.23 p.11))

((p.9) ($contents global ’(so)))

(() ($write-line p.9)))

($simple-return () p.39)))

6.4. FACTORIAL EXAMPLE 67

<FALSE> =

(cont ()

(let* (((t.37) ($contents p.19))

((t.38) ($contents p.18))

((t.36) ($multiply16 t.37 t.38))

(() ($set-contents p.19 t.36))

((t.35) ($contents p.18))

((t.34) ($add16 t.35 ’1))

(() ($set-contents p.18 t.34))

((t.33) ($contents p.24)))

($jump t.33)))

68 CHAPTER 6. CODE IMPROVEMENTS

6.4.3 Removing locations
The contents of the locations p.18 and p.19 are passed explicitly as t.40 and
t.41. Various local transformations were applied after the flow transformation.
This is the code at the end of the code improvement phase of the compiler.
(proc p.39 (global)

(let* (((p.15) ($contents global ’(si)))

((t.14) ($read p.15))

((p.13) ($contents global ’(si)))

(() ($read-line p.13))

((p.24) ($push ’ptr))

(() ($set-contents p.24 <LOOP>))

((p.27) ($contents p.24)))

($jump p.27 ’1 ’1)))

<LOOP> =

(cont (t.40 t.41)

($equal16 (<TRUE> <FALSE>) t.40 t.14))

<TRUE> =

(cont ()

(let* (((p.11) ($contents global ’(so)))

(() ($write t.41 p.11))

((p.9) ($contents global ’(so)))

(() ($write-line p.9)))

($simple-return () p.39)))

<FALSE> =

(cont ()

(let* (((t.36) ($multiply16 t.41 t.40))

((t.34) ($add16 t.40 ’1))

((t.33) ($contents p.24)))

($jump t.33 t.34 t.36)))

Chapter 7

Implementing Environments

7.1 Environments
The intermediate and machine languages treat identifiers differently. In the inter-
mediate language’s semantics the values of identifiers are stored in environments
that are created when procedures are called and the environments are saved for
use in evaluating lexically inferior expressions. In the machine language identi-
fiers are treated as locations and their values are kept in the store, that is, the value
of an identifier is the value to which it was bound most recently. The compiler
uses a global transformation to add the environments and lexical scoping of the
intermediate language’s semantics to the program itself.

The environments added by the transformation are linear arrays in the store
with the values of particular identifiers stored at fixed offsets. The compiler must
have an environment for every abstraction that contains free identifiers and must
make that environment available whenever the value of the abstraction is applied.
The environments may be either on the continuation stack or allocated from a
heap. In languages such as FORTRAN, which has no procedure values, or Pascal,
which is designed to prohibit procedures from outliving their lexical superior, all
procedures may be given stack environments. Scheme procedures may use the
stack only if the compiler can prove that they do not escape upwards.

proc expressions have their environments passed to them as an additional ar-
gument. All cont expressions use the current stack environment. The restrictions
on the use of continuations ensure that the top stack environment when a cont

expression is evaluated is also on top of the stack whenever the value of the ex-
pression is called. The register allocator takes care of saving and retrieving the

69

70 CHAPTER 7. IMPLEMENTING ENVIRONMENTS

values of identifiers needed by continuation arguments to primitive applications,
so these may be ignored for the moment.

The primitives introduced by the compiler to create and manipulate environ-
ments are:

($make-heap-environment) creates an environment in the heap.

($push-stack-environment c) pushes a new stack environment on top of con-
tinuation c.

($pop-stack-environment c) removes environment c from the stack and re-
turns the continuation upon which it was pushed.

($set-environment e name value) sets the value of name in environment e
to be value.

($get-environment e name) gets the value of name in environment e.

($set-code e name value) the same as set-environment except that name
is the name of a proc expression and value is a pointer to the code for a
procedure.

($make-procedure e name) makes a procedure from environment e and the
value of name in e.

($make-pointer e name) makes a pointer into the environment at the location
containing the value of e.

The names used by the compiler are symbolic constants that are replaced with
concrete offsets after register allocation.

7.2 The transformation
This transformation is done in four stages:

1. Create heap and stack environments for every proc expression.

2. Store all identifiers into the local heap and stack environments.

3. Create a procedure value for every proc expression.

7.2. THE TRANSFORMATION 71

4. Obtain the values of identifiers from the environments where necessary.

The first step is to add the calls that create the environments. Every proce-
dure creates two environments, one on the stack and the other in the heap. All
procedures that are lexically inferior to it, but not to any other procedure that is
inferior to it, have as their environment either the stack environment or the heap
environment, depending on whether they escape upwards or not. The stack envi-
ronment is created on top of the continuation passed to the procedure. References
to the continuation are replaced with references to the environment. An environ-
ment identifier is added to each procedure so that its own environment may be
passed to it. The outer proc of the program does not get an identifier added as it
is already passed the global environment.

(proc c (x y) ...)

=⇒
(proc c (e x y)

(let* (((s) ($push-stack-environment c))

((h) ($make-heap-environment)))

...))

The second step is to store the values of all identifiers in the current stack and
heap environments.

(proc c (e x y)

(let* (((s) ($push-stack-environment c))

((h) ($make-heap-environment)))

...

(cont (z) ...)

...))

=⇒

72 CHAPTER 7. IMPLEMENTING ENVIRONMENTS

(proc c (e x y)

(let* (((s) ($push-stack-environment c))

((h) ($make-heap-environment))

(() ($set-environment s ’h h))

(() ($set-environment h ’s s))

(() ($set-environment s ’x x))

(() ($set-environment h ’x x))

{and so forth})
...

(cont (z)

(let* ((() ($set-environment s ’z z))

(() ($set-environment h ’z z)))

...))

...))

In the third step every procedure is replaced with two calls, one that adds the
procedure’s code to the appropriate environment of its superior, and a second that
makes a pointer into that environment. In this example hs is the heap environment
if the procedure escapes upwards and the stack environment otherwise.

(proc c (e x y) ...)

=⇒
(let* ((() ($set-code hs ’l1 (proc c (e x y) ...)))

((p) ($make-procedure hs ’l1)))

p)

Finally, every identifier that is not bound within the surrounding procedure or
join is replaced with its value from the proper environment.

(proc c0 (e0 x y)

...

(proc c1 (e1) ... x ...)

...)

=⇒
(proc c0 (e0 x)

...

(proc c1 (e1) ... ($get-environment e1 ’x) ...)

...)

For nested applications the appropriate environment itself must be obtained
before the value can be retrieved.

7.3. IMPROVEMENT TRANSFORMATIONS 73

(proc c0 (e0 x y)

...

(proc c1 (e1) ...

(proc c2 (e2) ... x ...)

...)

...)

=⇒
(proc c0 (e0 x y)

...

(proc c1 (e1) ...

(proc c2 (e2)

(let* (...

((e) ($get-environment e2 ’e1))

((x) ($get-environment e ’x))

...)

...)

At this point primitive continuations may have any number of free identifiers,
joins have one free identifier that is the current stack environment, and procedures
have no free identifiers. Abstractions may now be copied without cost as they have
become simple pointers to code. Since all of the calling points of joins have been
identified, the cont expressions themselves have only the current stack as a free
identifier, and that identifier has the correct value wherever the cont is applied, the
value called at each $jump and $return may be replaced with the corresponding
cont expression.

(let* (((p) (cont (x y) ...))

...)

($jump p a b))

=⇒
(let* (...)

($jump (cont (x y) ...) a b))

7.3 Improvement transformations
After environments have been added to the code it can then be improved using
local transformations. As with the previous set of code improving transformations
the compiler continues to perform these transformations until none of them apply.
Since none of them increase the size of the program and none of them undo the

74 CHAPTER 7. IMPLEMENTING ENVIRONMENTS

work of others this process will terminate.
At the same time beta-substitution is performed whenever a transformation

makes it possible and any calls that do not access the store and whose results are
no longer used are removed.

If the value of an identifier has already been obtained in a lexically superior
call that is within the same procedure or join, the second $get-environment call
is replaced with the value of the first one.

(let* (((x0) ($get-environment e ’x))

...

((x1) ($get-environment e ’x))

(() ...x1...))

...))

=⇒
(let* (((x0) ($get-environment e ’x))

...

(() ...x0...))

...))

If a value is never obtained from an environment, the call that inserts it is
removed.

If the value of a name in an environment is the same as the value of some other
name, then one name is used for both. This commonly arises with procedures
and continuations, in which case calls to $get-environment become calls to
$make-procedure.

(let* (((p1) (proc c1 () ...))

((p2) (proc c2 () ... p1 ...)))

=⇒ {environment conversion}
(let* ((() ($set-code hs ’L1 (proc c1 (e1) ...)))

((p1) ($make-procedure hs ’L1))

(() ($set-environment hs ’p1 p1))

(() ($set-code hs ’L2

(proc c2 (e2)

... ($get-environment e2 ’p1) ...)))

((p2) ($make-procedure hs ’L2)))

The call ($get-environment e2 ’p1) is then replaced with ($make-procedure
e2 ’L1).

If a procedure does not use its environment at all, then its $set-code call can
be removed and all its $make-procedure calls can be replaced with the proc

7.4. LOCATIONS 75

expression. If a group of procedures only use their environments to reference
one another, then none of them actually needs their environment, and all of their
$make-procedure calls are replaced with their proc expressions.

Heap environments that are not referenced may be removed. Stack environ-
ments may not be removed yet as the register allocator may need them for the
environments of continuations to primitive calls.

7.4 Locations
Locations may be merged with environments if they share the same extent. All
locations allocated using $push can be moved into the current stack environment.
The $push call is replaced with a call to $make-pointer. Calls that access the
location are replaced with calls that access the environment.

76 CHAPTER 7. IMPLEMENTING ENVIRONMENTS

(let* (((s) ($push-stack-environment c))

((x) ($push ’32))

((y) ($contents x ’16 ’16)))

...)

=⇒
(let* (((s) ($push-stack-environment c))

((x) ($make-pointer s ’x))

((y) ($get-environment s ’x+16)))

...)

An identical transformation may be made using heap environments and loca-
tions returned by calls to $allocate.

7.5 Popping the stack
The calls to $pop-stack-env that remove stack environments are not added until
after register allocation. At that point the calls that create unused stack environ-
ments are removed from the code. All remaining stack environments need to be
popped off the stack. This is done by replacing the environments in returns with
the continuation obtained by popping the environment off of the stack. Remem-
ber that the environment transformation replaced all references to continuation
identifiers with the stack environment pushed on top of the continuation.

(proc c (...)

(let* (((s) ($push-stack-environment c)))

... ($some-return s ...) ...))

=⇒
(proc c (...)

(let* (((s) ($push-stack-environment c)))

... ($some-return ($pop-stack-environment s) ...) ...))

7.6. FACTORIAL EXAMPLE 77

In the case of a nearly tail-recursive call, one in which the continuation just
calls a continuation identifier, if none of the arguments (including the called value)
reference the stack environment, that stack environment may be popped off before
the call. This turns the nearly tail-recursive call into a truly tail recursive call as
no code needs to be generated for the continuation.

(proc c (...)

(let* (((s0) ($push-stack-environment c)))

($some-call (cont (...) ($some-return s0)) ...)))

=⇒
(proc c (...)

(let* (((s0) ($push-stack-environment c))

((s1) ($pop-stack-environment s0)))

($some-call (cont (...) ($some-return s1)) ...)))

7.6 Factorial example
This is the factorial program after environments have been added and simplified.
This example does not require much in the way of improvements other than re-
moving unused calls. Only global and t.14 are kept in an environment. Once
the <LOOP> procedure has been substituted at its two calling points the cell for the
recursive reference is no longer used and is removed. The call to pop off the stack
environment will be added after register allocation.

78 CHAPTER 7. IMPLEMENTING ENVIRONMENTS

(proc p.39 (global)

(let* (((p.42) ($push-stack-environment p.39))

(() ($set-environment p.42 ’global global))

((p.15) ($contents global ’(si)))

((t.14) ($read p.15))

(() ($set-environment p.42 ’t.14 t.14))

((p.13) ($contents global ’(si)))

(() ($read-line p.13)))

($jump <LOOP> ’1 ’1)))

<LOOP> =

(cont (t.40 t.41)

(let* (((p.44) ($get-environment p.42 ’t.14)))

($equal16 (<TRUE> <FALSE>) t.40 p.44)))

<TRUE> =

(cont ()

(let* (((p.43) ($get-environment p.42 ’global))

((p.11) ($contents p.43 ’(so)))

(() ($write t.41 p.11))

((p.9) ($contents p.43 ’(so)))

(() ($write-line p.9)))

($simple-return () p.39)))

<FALSE> =

(cont ()

(let* (((t.36) ($multiply16 t.41 t.40))

((t.34) ($add16 t.40 ’1)))

($jump <LOOP> t.34 t.36)))

Chapter 8

Resource Allocation

8.1 Machine resources
The final phase of compilation is the allocation of machine resources, such as reg-
isters and functional units, to the different parts of the program. The allocation
of resources is expressed through transforming the program. For registers this
involves changing the names of identifiers to correspond to the register currently
containing the value of the identifier. Functional units are specified by the prim-
itive operations, in that every primitive operation uses particular functional units.
Allocating functional units involves replacing primitive operations with others that
use the desired functional units.

8.2 Instruction selection and scheduling
The current implementation does one form of instruction selection. The instruc-
tion selection transformation attempts to find sets of primitive applications that
can be coalesced into a single load or store instruction using the MC68020’s in-
dexed addressing mode. In Pascal programs opportunities for this transformation
most often arise from array index calculations. On the MC68020 reading from
an array of 16 bit values using a 16 bit index value involves several instructions,
each of which is a separate primitive. The index must be sign-extended to a 32
bit value, added to the base offset of the array, multiplied by two (to get a byte
address), and added to the address of the array to get the final address. Using
the indexed addressing mode on the MC68020 the entire calculation can be done
using one instruction.

79

80 CHAPTER 8. RESOURCE ALLOCATION

Instructions, or rather the primitive operations that represent instructions,
could be reordered in order to improve the register allocation. Currently the com-
piler does not do this.

8.3 Register allocation
Machine registers must be allocated to hold the values of identifiers. The two
constraints that determine possible allocations are that the machine has only a
fixed number of registers and primitive procedures have requirements as to the
locations of their arguments and results. The correctness of a particular set of
register allocations for a program is verified when the program is transformed to
reflect the allocations.

Register allocation includes saving the environments of continuation argu-
ments to primitive applications under the guise of ensuring at every application
all live values are saved on the stack or in unused registers. The live values are
exactly the free identifiers of the continuation arguments in the application. Prim-
itives that call values are specified as modifying every register (except the stack)
and thus every free identifier in the continuation to the call must be saved on the
stack.

The current implementation uses a very simple register allocation algorithm.
Each basic block is done separately, with splits inheriting the final machine state of
their predecessor. The register selection algorithm is purely local to basic blocks
with the exception that it must look ahead to determine which values need to
be preserved for use in later blocks. Arguments in calls to abstractions whose
applications are known are passed in registers determined entirely by the size of
the values. Pointer values are passed in the MC68020’s address registers, all other
values are passed in the data registers. Values are targetted to particular registers
if the block ends with a call, as calls usually require that each argument be in a
particular location. Typically, non-call primitives only require that a value be in a
register of a particular type.

It would be easy to improve the current implementation’s register allocation al-
gorithm. Global register allocation techniques such as graph coloring [Chaiten 82]
or trace scheduling [Fisher 81] could be used with some modification.

8.4. IDENTIFIER RENAMING 81

8.4 Identifier renaming
Once registers have been selected for the identifiers in the program the names
of the identifiers must be changed to those of the registers. At the same time
primitive applications are added to the code to move values from register to reg-
ister and to and from the stack. On the MC68020 the two primitives for mov-
ing values between registers are $move which moves a value from one register
to another and $exchange which exchanges the values between two registers.
$set-environment and $get-environment are used to move values to and
from the current stack environment.

The renaming is done one call at a time, going down each basic block in turn.
The program keeps track of the current machine state, which is the correspondence
between identifiers and registers and stack locations and the correspondence be-
tween identifiers in the transformed and untransformed programs. For each call it
verifies that the arguments are indeed in registers appropriate to the primitive and
that the values of the arguments are the same as those in the unmodified call.

8.5 Finishing up
As described in Section 7.5, once the identifiers have been renamed any empty
stack environments are removed from the code and primitives are added to pop
off the rest.

One last improvement transformation is applied. Trivial basic blocks, those
that consist of a single call, are removed from the code to eliminate jumps to
jumps.

Finally, all proc and cont expressions are turned back into lambdas, with the
continuation identifier of the proc expressions added to the front of the identifier
list.

Compilation is now complete. To actually run the program it must be assem-
bled into machine code. The current implementation uses the assembler from
the Orbit compiler, which accepts hints as to how the blocks should be ordered.
The compiler uses this to invert loops by having the exit conditionals in loops be
followed by the block that continues around the loop.

82 CHAPTER 8. RESOURCE ALLOCATION

8.6 Factorial example
(lambda (stack a0)

(let* (((stack) ($push-stack-environment stack))

(() ($set-environment stack ’global a0))

((a0) ($contents a0 ’<si>))

((d0) ($read a0))

(() ($set-environment stack ’v4 d0))

((a0) ($get-environment stack ’global))

((a0) ($contents a0 ’<si>))

(() ($read-line a0))

((d0) ($move16 ’1))

((d1) ($move16 ’1)))

($jump <loop> d0 d1)))

<loop> =

(lambda (d0 d1)

(let* (((d2) ($get-environment stack ’v4)))

($equal16 (<true> <false>) d0 d2)))

<true> =

(lambda ()

(let* (((a0) ($get-environment stack ’global))

((a0) ($contents a0 ’<so>))

(() ($write d1 a1))

((a0) ($get-environment stack ’global))

((a0) ($contents a0 ’<so>))

(() ($write-line a0))

((stack) ($pop-stack-environment stack)))

($simple-return () stack)))

<false> =

(lambda ()

(let* (((d1) ($multiply16 d0 d1))

((d0) ($add16 d0 ’1)))

($jump <loop> d0 d1)))

8.6. FACTORIAL EXAMPLE 83

Following is the machine code produced for the factorial example. Each in-
struction is shown with the corresponding primitive application.

lea -6(a7),a7 ($push-stack-environment stack)

move.l a0,(a7) ($set-environment stack ’global a0)

move.l (a0),a0 ($contents a0 ’<si>)

jsr read ($read a0)

move.w d0,4(a7) ($set-environment stack ’v4 d0)

move.l (a7),a0 ($get-environment stack ’global)

move.l (a0),a0 ($contents a0 ’<si>)

jsr read line ($read-line a0)

moveq #1,d0 ($move16 ’1)

moveq #1,d1 ($move16 ’1)

bra loop ($jump <loop> d0 d1)

false:

muls.w d1,d0 ($multiply16 d0 d1)

addq.l #1,d1 ($add16 d0 ’1)

loop:

move.w 4(a7),d2 ($get-environment stack ’v4)

cmp.w d0,d2 ($equal16 (<true> <false>) d0 d2)

bne false

true:

move.l (a7),a0 ($get-environment stack ’global)

move.l 4(a0),a0 ($contents a0 ’<so>)

jsr write ($write d1 a1)

move.l (a7),a0 ($get-environment stack ’global)

move.l 4(a0),a0 ($contents a0 ’<so>)

jsr write line ($write-line a0)

lea 6(a7),a7 ($pop-stack-environment stack)

rts ($simple-return () stack)

84 CHAPTER 8. RESOURCE ALLOCATION

Chapter 9

Compiler Extensions

The compilation method described in the previous chapters handles the basic pro-
gramming language constructs used in many programming languages. It is also
true that there are useful constructs that it does not implement or does so ineffi-
ciently. Typically these require manipulation of the continuation stack or the store
in ways that are not provided for in the intermediate language. Efficient imple-
mentation can often be achieved by the adding new transformation phases to the
compiler, usually to determine where the increased functionality is not needed.

Extensions to the compiler needed for several programming language con-
structs are presented here. Neither the list of constructs nor the techniques pre-
sented are meant to be exhaustive. The goal here is to show the flexibility of
the compilation method in that it allows for modifications to the compiler when
required for particular languages.

9.1 First-class continuations
In the programming language Scheme continuations are first-class objects. One
implementation possibility would be to create a copy of the continuation stack in
the heap and encapsulate it in a callable data structure. When the continuation was
called, the stack would be copied back into its original location in memory and
returned to. The compiler would have to be modified so that it would not move
modifiable locations onto the stack.

Another possibility would be to have the Scheme front-end introduce its own
continuations into the source. The compiler would then create heap closures for
most continuations, although the stack would be used when the compiler found

85

86 CHAPTER 9. COMPILER EXTENSIONS

continuations that did not escape upwards.

9.2 Tail recursion in Scheme
Scheme also requires that tail-recursive calls be implemented without using any
finite resource (such as a continuation stack). To ensure this, the compiler could be
modified so that procedures called tail-recursively would be considered to escape
so that their environment will be created in the heap and not on the stack. It would
then always be possible to remove the current stack environment before any nearly
tail-recursive call, thus making the call truly tail-recursive.

9.3 Latent types
Another difficulty with Scheme (along with other Lisp dialects, APL [Gilmam 84],
and other languages) is that it is not possible to determine the types of all objects
at compile time. The data structures of an implementation must include the types
of objects. This often introduces run-time overhead of one form or another in
that type information must be added and removed from data. The compiler would
need additional code improvement transformations to generate efficient code in
the presence of typed data structures.

9.4 Lazy evaluation
Using the tranformational compiler to compile a lazy functional language such as
ALFL [Hudak 84] would be simple, as such languages are based directly on the
lambda calculus. However, the generated code would be quite inefficient without
additional code improvement transformations. Specifically, some form of strict-
ness analysis would be needed to remove some of the overhead of lazy evaluation.

9.5 Non-local return
Many languages contain some form of non-local return. This is equivalent to re-
turning to a continuation other than the most recently created one. An example
of this is goto in Pascal which may transfer control out of a procedure body by-
passing the procedure’s return. The obvious implementation is to put the code

9.5. NON-LOCAL RETURN 87

following a goto label into a procedure and effect a goto by calling the appro-
priate procedure without creating a new continuation (this would require a special
primitive procedure). This works for local gotos in that the compiler will deter-
mine that the procedure is always called with a known continuation on top of the
stack and will make the goto procedure into a cont expression and thus the call
will be compiled into a simple jump.

The difficulty with implementing non-local returns is the compiler’s depen-
dence on the fact that all calls to the value of a cont expression will be within the
same procedure as the expression itself. Thus the goto procedure might have to
remain a proc expression and calls would not be simple jumps. One solution to
this would be to add another type of abstraction having the semantics of lambda.
These abstractions, escape expressions, are like cont expressions in that they
are not passed a continuation and may access their environment through the stack
but, unlike cont expressions, may be called from within procedures other than
the one containing the escape expression. The only restriction would be that the
procedure containing the escape expression can not have returned (that is, called
its continuation) when the expression is called.

I have come up with a variety of ways to translate gotos into escape, but as
none of them are entirely pleasing I am still working on this problem. Adding
escape procedures requires a few changes to the compilation transformations,
usually just deciding whether, for a particular transformation, they are to be treated
as proc expression or as cont expressions. They are called using primitive proce-
dures as are the other abstractions. Additional code improvement transformations
are needed to generate the desired machine code, including changing escape ex-
pressions to cont expressions if they turn out to be local returns after all.

88 CHAPTER 9. COMPILER EXTENSIONS

Chapter 10

Results

The compilation method described in this thesis has been implemented in T
[Rees 84], a dialect of Scheme. Two front-ends have been written, one for Pas-
cal and one for Basic, along with the required primitive operations. In addition,
there is a front-end for Scheme but without primitive operations or the necessary
run-time system.

The Pascal and Scheme front-ends were developed along with the compiler.
Once that was done, writing the Basic front-end and primitive operations took less
than two days.

10.1 Timings
Several Pascal benchmarks have been used to compare the output of the imple-
mentation with that of a more traditional production compiler. The timings are
shown here along with the times for the same programs compiled using the Apollo
Pascal compiler. The Apollo Pascal compiler is a hand-coded compiler that does
approximately the same optimizations as the compiler presented here. The main
differences are that the Apollo compiler uses a less efficient procedure call mecha-
nism but does some non-local register allocation and loop invariant code hoisting.

Except for palindrome the benchmark programs were gathered by John Hen-
nessy and modified by Peter Nye. I obtained them from David Kranz.

89

90 CHAPTER 10. RESULTS

Running Time
Us Them Us / Them Description

Fib 3.40 4.47 0.76 integer fibonacci
Bubble 0.72 0.64 1.09 bubble sort on 1000 integers
Quick 0.38 0.26 1.46 quicksort on 5000 integers
Palindrome 5.06 4.79 1.06 integer arithmetic operations
Perm 0.91 0.81 1.12 recursive array permutations
Towers 3.50 3.92 0.89 towers of hanoi

‘Us’ is the times for the benchmarks as compiled by the transformational com-
piler, ‘Them’ is the times when compiled using the Apollo Pascal compiler. All
times are in seconds. The third column contains the ratio of the two times.

The transformational compiler’s output runs a bit slower except in the case of
Fib and Towers, both of which do a fair number of procedure calls.

Compilation Time
Us Them Us / Them

Fib 3.40 0.45 7.56
Bubble 9.70 1.00 9.70
Quick 12.28 1.50 8.19
Palindrome 16.43 1.96 8.38
Perm 7.01 0.71 9.87
Towers 17.02 1.88 9.05

This table shows the time it takes the two compilers to compile the bench-
marks. Not surprisingly, as little effort was made to speed it up, the transforma-
tional compiler is much slower. Its compilation speed comes out to between five
and seven lines of Pascal per second on these programs.

10.2 Results and future work
This dissertation began with five problems with compilers:

1. Different ones are needed for different languages

2. Different ones are needed for different machines

3. Many do not implement the source language correctly

10.2. RESULTS AND FUTURE WORK 91

4. Their output is often inefficient

5. They run slowly

The compilation transformations described in this dissertation are correct, an
implementation of them can compile programs written in a variety of program-
ming languages and get output that is as good as that of a hand-coded compiler
doing the same optimizations. What remains to be done is to work towards the
ideal compiler described at the beginning of Chapter 1. More front-ends need to
be written, the compiler should be ported to other machines, the implementation
needs more debugging, more code improvement transformations are needed, and
the compiler must be made faster.

My current goal is to finish the Scheme primitives and use the compiler as part
of a full Scheme implementation. A front-end for a pure, lazy functional language
is also planned, along with associated transformations based on strictness and
related analyses. The compiler will also be ported to different machines.

There are numerous large and small code improvement transformations that
can be added: moving loop-invariant code out of loops, lambda hoisting to reduce
consing in Scheme programs, taking advantage of commutative operation during
register allocation, and so on.

Speeding up the current implementation is in part just a matter of program
engineering.

92 CHAPTER 10. RESULTS

Bibliography

[Aho 86] Alfred V. Aho, Ravi Sethi, and Jeffery D. Ullman. Compilers:
Principles, Techniques, and Tools. Addison Wesley, 1986.

[Barrett 79] William A. Barrett and John D. Couch. Compiler Construction:
Theory and Practice. Science Research Associates, 1979.

[Marateck 75] Samuel L. Marateck. Basic. Academic Press, 1975.

[Boyle 84] James M. Boyle and Monagur N. Muralidharan. Program
reusability through program transformation. In IEEE Transac-
tions on Software Engineering SE-10(5), September 1984.

[Boyle 86] James M. Boyle, Kenneth W. Dritz, M .N. Muralidharan, and
Robert J. Taylor. Deriving sequential and parallel programs
from pure Lisp Specifications by program transformation. In
IFIP WG2.1 Working Conference on Programme Specifications
and Transformations.

[Brooks 82] Brooks, R.A., Gabriel, R.P. and Steele, G.J. Jr. An optimizing
compiler for lexically scoped LISP. In Proceedings of the SIG-
PLAN Symposium on Compiler Construction, ACM, SIGPLAN
Notices 17(6), June 1982.

[Clinger 84] William Clinger. The Scheme 311 Compiler. In Conference
Record of the 1984 ACM Symposium on Lisp and Functional
Programming, ACM, 1984.

[Chaiten 82] G. J. Chaiten. Register allocation and spilling via graph color-
ing. In Proceedings of the SIGPLAN ’82 Symposium on Com-
piler Construction, ACM, SIGPLAN Notices 17(6), June 1982.

93

94 BIBLIOGRAPHY

[DeMillo 78] Richard A. DeMillo, Richard J. Lipton, and Alan J. Perlis. So-
cial processes and proofs of theorems and programs. Depart-
ment of Computer Science Research Report 136, Yale Univer-
sity, June 1978.

[Fisher 81] Joseph A. Fisher. Trace Scheduling: a technique for global mi-
crocode compaction. In IEEE Transactions on Computers c-
30(7), July 1981.

[Feeley] M. Feeley and G. Lapalme. Closure generation based on
viewing LAMBDA as EPSION plus COMPILE. Département
d’informatique et de recherche opérationnelle (I.R.O.), Univer-
sité de Montréal, P.O.B. 6128, Station A, Montréal, Québec,
H3C3J7 (Canada).

[Gilmam 84] Leonard Gilman and Allen J. Rose. APL: An Interactive Ap-
proach. John Wiley & Sons, 1984.

[Hudak 84] Paul Hudak. ALFL Reference Manual and Programmers Guide.
Technical Report YALEU/DCS/TR-322, Department of Com-
puter Science, Yale University, October 1984,

[Gordon 79] Michael J. C. Gordon. The Denotaional Description of Pro-
gramming Languages. Springer-Verlag, 1979.

[Jensen 74] Kathleen Jensen and Niklaus Wirth. Pascal: User Manual and
Report. Springer-Verlag, 1974.

[Johnsson] Thomas Johnsson. Lambda lifting: Transforming programs into
recursive equations. In Compiling Lazy Functional Languages.
PhD thesis, Chalmers University of Technology, 1987

[Knuth 68] Donald E. Knuth. Semantics of context-free languages. In
Mathematical Systems Theory 2(2):127-145, February 1968.

[Kranz 86] David Kranz, Richard Kelsey, Jonathan Rees, Paul Hudak,
James Philbin, and Norman Adams Orbit: An optimizing com-
piler for Scheme. In Proceedings of the SIGPLAN ’86 Sym-
posium on Compiler Construction, ACM, SIGPLAN Notices
21(7), June 1986.

BIBLIOGRAPHY 95

[Lee 87] Peter Lee. The Automatic Generation of Realistic Compilers
from High-level Semantics Descriptions. PhD thesis, University
of Michigan, 1977.

[Motorola 85] Motorola Inc. MC68020: 32-bit Microprocessor User’s Man-
ual. Prentice-Hall, 1985.

[Paulson 82] Lawrence Paulson. A semantics-directed compiler generator.
In Conference Record of the Ninth Annual ACM Symposium on
Principles of Programming Languages, ACM, 1982.

[Plotkin 75] G. D. Plotkin. Call-by-name, call-by-value and the λ-calculus.
In Theoretical Computer Science 1:125-159, 1975.

[Rees 84] Jonathan A. Rees, Norman I. Adams, and James R. Meehan.The
T manual, fourth edition. Yale University Computer Science
Department, January 1984.

[Rees 86] Jonathan Rees and William Clinger, editors. The revised3 re-
port on the algorithmic language Scheme. In SIGPLAN Notices,
21(12), December 86.

[Schmidt 86] David A. Schmidt. Denotational Semantics. Allyn and Bacon,
1986.

[Slade 87] Stephen Slade. The T Programming Language. Prentice-Hall,
Inc. 1987.

[Standish 76] T. A. Standish, D. C. harriman, D. F. Kibler, and J. M. Neigh-
bors. The Irvine program transformation catalogue Department
of Information and Computer Science, University of California
at Irvine, 1976.

[Steele 78] Guy L. Steele Jr.Rabbit: a compiler for Scheme. MIT Artificial
Intelligence Laboratory Technical Report 474, May 1978.

[Stoy 77] Joseph E. Stoy. Denotational Semantics: the Scott-Strachey
Approach to Programming Language Theory. The MIT Press,
1977.

	Acknowledgements
	Introduction
	The problem
	Compilation by program transformation
	Source code into intermediate language
	Making the program linear
	Adding continuations
	Code improvements
	Adding environments
	Register allocation
	Extensions

	Other solutions
	Multiple source languages
	Correctness
	Efficient output
	Conclusion

	Semantics
	The compiler's intermediate language
	The store
	Notation
	Syntax
	Domain equations
	Semantic functions
	Auxiliary functions

	The machine language
	Abstract syntax
	Domain equations
	Semantic functions
	Auxiliary functions

	Front Ends
	Identifiers and syntax
	Primitive procedures
	Locations
	Global environment
	Procedure call and return
	Recursion
	Pascal examples
	Data structures
	Compound statements
	Procedures and functions

	Factorial in Pascal

	Ordering Calls
	Making code linear
	The transformation
	Factorial example

	Continuation Passing Style
	Converting code into CPS
	The transformation
	Notation and basic blocks
	Restrictions
	Factorial example

	Code Improvements
	Local code transformations
	Beta substitution
	Operation specific transformations
	Simplifying procedure calls
	Evaluation for control
	Local location removal

	Flow analysis
	The algorithm
	An example

	Removing locations
	Examples
	The transformation

	Factorial example
	Local transformations
	Flow analysis
	Removing locations

	Implementing Environments
	Environments
	The transformation
	Improvement transformations
	Locations
	Popping the stack
	Factorial example

	Resource Allocation
	Machine resources
	Instruction selection and scheduling
	Register allocation
	Identifier renaming
	Finishing up
	Factorial example

	Compiler Extensions
	First-class continuations
	Tail recursion in Scheme
	Latent types
	Lazy evaluation
	Non-local return

	Results
	Timings
	Results and future work

	Bibliography

